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ABSTRACT

The empirical correlation matrix of asset returns in an invest-
ment portfolio has its built-in noise due to market microstruc-
ture. This noise is usually eigenfiltered for robust risk analy-
sis and management. Jacobi algorithm (JA) has been a pop-
ular eigensolver method due to its stability and efficient im-
plementations. We present a fast FPGA implementation of
parallel JA for noise filtering of empirical correlation matrix.
Proposed FPGA implementation is compared with CPU and
GPU implementations. It is shown that FPGA implementa-
tion of eigenfiltering operator in real-time significantly out-
performs the others. We expect to see such emerging high
performance DSP technologies to be widely used by the fi-
nancial sector for real-time risk management and other tasks
in the coming years.

1. INTRODUCTION

The commonly used metric for the measurement of portfolio
risk is the standard deviation of its return [1, 2]. The port-
folio risk is defined as a function of pair-wise correlations
between its asset returns. The empirical correlation matrix
of assets in a portfolio has intrinsic noise due to market mi-
crostructure that degrades risk calculations. Eigendecompo-
sition of empirical correlation matrix, so called eigenfiltering,
is a popular and robust method to remove undesired market
noise [2]. However, eigenanalysis is a computationally ex-
pensive operator. With the advent of affordable high perfor-
mance computing devices such as field-programmable gate
array (FPGA) and general purpose graphics processing unit
(GPU), research interest on parallel algorithms has recently
gained new momentum. Jacobi algorithm (JA) [3] is a highly
parallel method to implement eigenanalysis of a given matrix.
In this paper, we present an FPGA implementation of JA for
eigenfiltering of noise for portfolio risk analysis. Performance
improvement FPGA brings over GPU and CPU implementa-
tions [4, 5] is emphasized, and risk calculations on different
devices are compared.
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2. PORTFOLIO RISK AND EIGENFILTERING OF
EMPIRICAL CORRELATION MATRIX FOR NOISE

REMOVAL

Let q =
[
q1 q2 · · · qN

]T
represent investment allo-

cation vector for a portfolio of N financial assets, and let
r =

[
r1 r2 · · · rN

]T
be an N × 1 vector comprised

of asset returns where superscript T is the transpose opera-
tor. Return of an N -asset portfolio is expressed as rp = qTr.
Portfolio risk is defined as the standard deviation of portfolio
return and calculated as follows

σp =
(
E
{
r2p
}
− µ2

p

)1/2
=
(
qTCq

)1/2
=
(
qTΣTPΣq

)1/2
,

(1)
where µp = E {rp} = qTE {r} = qTµ is the expected
return of the portfolio, µ is an N × 1 vector, and its elements
are expected returns of assets, Σ is anN×N diagonal matrix
with elements corresponding standard deviations (volatilities)
of asset returns σi, C is N × N covariance matrix of asset
returns, and P isN×N correlation matrix where [Pij ] = ρij .
We can express P using eigendecomposition

P = ΦΛΦT, (2)

where Λ = diag(λ1, λ2, . . . , λN ) is a diagonal matrix with
the eigenvalues as its elements, λk as the kth eigenvalue with
the order λk ≥ λk+1. Φ =

[
φ1 φ2 · · · φN

]
is an

N × N matrix comprised of N eigenvectors as its columns,
and φk is the N × 1 eigenvector corresponding to the kth
eigenvalue, λk. Note that λk ≥ 0 ∀k and

∑
k λk = N .

Empirical correlation matrix is broken in two components
through the eigenfiltering operation [2]

P̃ =

L∑
k=1

λkφkφ
T
k + E, (3)

where L is the number of selected factors (eigenvalues) with
L � N , and E is the diagonal noise matrix added in the
equation in order to preserve the total variance, i.e. keeping
the trace of P̃ to be equal to N . Therefore, the elements of E
are defined as

E = [Eij ] =

(
1−

L∑
k=1

λkφ
(k)
i φ

(k)
j

)
δi−j , (4)
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where δi is the Kronecker delta function, φ(k)i is the ith el-
ement of the kth eigenvector. Eigenfiltered portfolio risk is
calculated by replacing P with P̃ (3) as

σ̃p =
(
qTΣTP̃Σq

)1/2

. (5)

In order to calculate eigenfiltered risk of (5) in hardware, a
robust and fast eigensolver algorithm is needed. Jacobi al-
gorithm is used due to its robustness [6] and highly parallel
implementation on computing devices [3].

3. JACOBI ALGORITHM FOR
EIGENDECOMPOSITION

Jacobi algorithm provides an approximate numerical solu-
tion to (2) by iteratively reducing the squared sum of the
off-diagonal elements, ε, of matrix P by multiplying it from
the right and left with Jacobi rotation matrix, J(p, q, θ), and
its transpose, respectively, and overwriting onto itself as ex-
pressed

P(k+1) = JT(p, q, θ)P(k)J(p, q, θ), (6)

where 1 ≤ p < q ≤ N . Note that multiplication from left
and right corresponds to row and column updates in P, re-
spectively. Matrix J(p, q, θ) is sparse as defined

J(p, q, θ) = [J(p, q, θ)ij ] =



cos θ i = p, j = p

sin θ i = p, j = q

− sin θ i = q, j = p

cos θ i = q, j = q

0 otherwise

. (7)

Multiplications in (6) are repeated until ε < εTHR where
εTHR is a predefined threshold value. After sufficient num-
ber of rotations, matrix P gets closer to Λ, and the succes-
sive multiplications of J(p, q, θ) leads to an approximation of
eigenmatrix Φ [3]. Elements of J(p, q, θ), i.e. c = cos θ and
s = sin θ, are chosen such a way that the following equality
holds[

P̄pp 0
0 P̄qq

]
=

[
c −s
s c

] [
Ppp Ppq

Pqp Pqq

] [
c s
−s c

]
,

(8)
where Pij and P̄ij are elements of P(k) and P(k+1) located
on the ith row and jth column, respectively. P is a symmetric
matrix, Ppq = Pqp . Using trivial trigonometric identities it
follows from (8) that the rotation angle is equal to

θ = 0.5 tan−1 [2Ppq/ (Pqq − Ppp)] . (9)

Jacobi algorithm is most efficiently implemented on a com-
puting device with N/2 parallel processing units due to the
sparsity of the rotation matrix J(p, q, θ) by using chess tour-
nament (CT) algorithm [3]. In CT, for N players, there are

N/2 pairs and N − 1 matches that have to be held such that
each player matches against any other player in the group.
Once a match set is completed, the first player stands still and
every other player moves one seat in clockwise direction. For
N = 4, the pairs for N − 1 = 3 steps are defined as[
p(1) p(2)

q(1) q(2)

]
:

[
1 3
2 4

]
−→

[
1 2
4 3

]
−→

[
1 2
3 4

]
,

(10)
Note that p(2) and q(2) are interchanged in the last step since
the condition p < q must hold [3]. It is noted that this inter-
changing is necessary after the step N/2 + 1.

4. FPGA BASED IMPLEMENTATION OF JACOBI
ALGORITHM

Several VLSI [7–9] and FPGA [10–13] implementations of
parallel Jacobi algorithm (PJA) are reported in the litera-
ture. Most hardware implementations of Jacobi are put on
processors that employ coordinate rotation digital computer
(CORDIC) [14, 15], i.e. an iterative algorithm to rotate vec-
tors. Either a large number of processors are interconnected
with systolic array (SA) [7, 13, 16] or only two processors
are used in a cyclic fashion [12, 13]. For applications where
only the eigenvalues are required, only half or upper-triangle
SA are used [13]. We implement PJA for eigenfiltering of P
in (2) by using full SA of CORDIC processors. We improved
the prior designs reported such that the paths in SA can be
reconfigured in order to support variable size input matrices
as detailed below.

4.1. CORDIC Algorithm

CORDIC is a simple and efficient algorithm to rotate vectors
when no hardware multiplier is available [14, 15]. Rotation
of a 2× 1 vector is achieved by[

x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
. (11)

We can rewrite the elements of the rotated vector by using the
trigonometric identity cos θ =

(
1 + tan2 θ

)−1/2
as follows

x′ =
x− y tan θ√

1 + tan2 θ
, y′ =

x tan θ + y√
1 + tan2 θ

. (12)

In each iteration of CORDIC, i, rotation angle, θ, is restricted
to θ = tan−1

(
±2−i

)
. Therefore, computations of y tan θ

and x tan θ can be implemented by simple binary shift oper-
ations. Specifically, in order to get closer to the target vector,
CORDIC performs the following operations in each iteration

xi+1 = Ki(xi − yi1ϕi≥02−i)

yi+1 = Ki(xi1ϕi≥02−i + yi), (13)
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Fig. 1. Systolic array used for interconnecting CORDIC pro-
cessors.

Fig. 2. Inner-exchange scheme of the processors.

where Ki =
(
1 + 2−2i

)−1/2
, 1X : X → {+1,−1} is the

indicator function, and ϕi is the residual angle updated as
ϕi+1 = ϕi − 1ϕi≥0 tan−1(2−i) with ϕ0 = θ, x0 = 1, and
y0 = 0. Note that calculation of ϕi requires elementary an-
gles, tan−1(2−i), that can be stored in a look up table (LUT).
Moreover, calculation of Ki requires a square-root operator.
In practice, an approximation to the asymptotic value of Ki,
∼0.60725, is used. Alternatively, values of Ki can be pre-
calculated and stored in a LUT. Operations of CORDIC dis-
cussed so far are called rotation mode. It is also possible to
measure the angle of a vector by using the vectoring mode
of CORDIC. In this mode, initial values of the coordinates
(13) x0 and y0 are set to be equal to the original coordi-
nates. The algorithm is run such that the target rotated vector
is
[

1 0
]T

. In this mode, the indicator function given in
(13) is modified as 1yi≥0.

4.2. CORDIC Processors and Systolic Array

There are two types of CORDIC processors (CP) in the de-
sign, namely diagonal and off-diagonal CPs. Both use rota-
tion mode of CORDIC during the row and column updates.
Additionally, diagonal CPs calculate the angle θ given in (9)
and distribute it to the off-diagonal CPs on the same row and
column. Note that θ in (9) is nothing else but half the angle of
2×1 vector

[
(Pqq−Ppp) 2Ppq

]T
.Hence, it is determined

with using CORDIC vectoring mode. Once the angle is de-
termined, all processors perform the row, column, and eigen-
vector update operations. Row update is a rotation of 2 × 1

vector
[
Ppn Pqn

]T
where 1 ≤ n ≤ N that is performed

in parallel by an array of N/2×N/2 CPs. After the comple-
tion of row update, similarly, column-update and eigenvector
update operations are performed.

Fixed-point representation and truncation circuits are em-
ployed in CPs. Word length is of B bits and the decimal part
is stored after the Gth MSB. Decimal number is calculated as

D =

B−1∑
i=0

bi2
i−B+G, (14)

where bi is the ith LSB with 0 ≤ i < B.
An SA [17] is used in our design to interconnect CPs. In-

stead of broadcasting data to each processor, SA ensures that
the data travels around the network by an exchange among
neighboring processors. This significantly reduces data trans-
fer complexity. Fig. 1 displays SA of CPs for N = 8.
Note that SA based eigensolvers reported in the literature (see
[13] and references therein) only support matrices of a pre-
determined size. However, our improved design supports ma-
trices with different sizes as long as they are within the max-
imum size range supported. This flexibility is achieved by
i. turning on and off the communication between the proces-
sors, and ii. re-routing the data transfer automatically for any
given matrix size.

4.3. Control and Synchronization

Our FPGA implementation is coordinated by two finite state
machines (FSM). Namely, main FSM (MFSM) and solver
FSM (SFSM). MFSM is responsible for overall operation of
the design. It has four states named as IDLE, LOAD, SOLVE,
and OUTPUT. In the LOAD state, each element of input array
with size N2 × 1 representing a matrix of size N × N is re-
ceived serially. When all elements are fed, MFSM switches to
SOLVE state in where SFSM is started. SFSM is responsible
for controlling CPs such that Jacobi rotations are performed.
It has eight states named as INIT, ANGLE, ROWP, COLP,
EVP, INX, OUTX, and FINISH. In ANGLE state, rotation an-
gle defined in (9) is calculated by diagonal CPs. Next, SFSM
switches to ROWP, COLP, and EVP states, that stand for row-
processing, column-processing, and eigenvector-processing,
respectively. Once all the rotations are completed, SFSM pro-
ceeds to INX and OUTX states. Data residing in each CP
is exchanged, first within the processor itself, then among
neighboring processors, in INX and OUTX states, respec-
tively, such that all processors are ready for the next step in
accordance with the chess tournament (CT) algorithm. Note
that CPs located on the top row and far left column of SA per-
form inner exchange differently than the rest due to the fact
that the first index is kept static in CT (see Fig. 2). Outer-
exchange scheme is displayed in Fig. 1. Finally, whenever
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N = 16 N = 64 N = 256 N = 512 N = 1024

CPU 0.97 17.25 1,326.88 11,570.31 110,761.36
GPU 2.55 10.79 65.43 248.29 1,610.13
FPGA 0.17 2.79 44.58 178.32 713.29

Table 1. Computation time in milliseconds for CPU, GPU,
and FPGA. Values in italics are estimated via (16).
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Fig. 3. Portfolio risk in bps (0.01%) as a function of discrete-
time, n, calculated with CPU, GPU, and FPGA.

total number of sweeps is reached, SFSM proceeds to FIN-
ISH state that results in MFSM to switch to the OUTPUT
state.

4.4. Computation Time

At each step of a sweep, a CP uses 14 cycles in operations
necessary for initialization and exchange of the data. More-
over, CORDIC algorithm is used for 4 times within a pro-
cessor at each step. In the worst-case scenario, each run of
CORDIC algorithm takes maximum number of iterations (cy-
cles), i.e. M , to be completed. Given that there areN−1 steps
in a sweep, number of cycles required for a complete sweep is
Cs = (N − 1) (14 + 4M) . As discussed earlier, N2 cycles
are required for both feeding in and taking out the data from
SA. Therefore, total number of cycles required for the design
to provide the result is

Ct = 2N2 + SCs = 2N2 + S (N − 1) (14 + 4M) (15)

where S is the pre-determined number of sweeps and larger
than zero.

5. PERFORMANCE COMPARISONS

A real-time risk analysis system that supports empirical cor-
relation matrix sizes up to Nmax = 16 is implemented on
Altera Stratix IV FPGA coded in VHDL [18] with the val-
ues of M = 24 in (15), B = 32 and G = 16 in (14). Area
and fmax, the maximum frequency the circuit can be clocked,

are 334,252 ALUTs (78% of total available) and 56.85 MHz,
respectively. For comparison purposes, we cite performance
of CPU and GPU implementations of Jacobi algorithm re-
ported in [5]. We re-tested with faster CPU and GPU we cur-
rently have, Intel® Core™ i7-3960X CPU and an NVIDIA
GeForce™ GTX 580, respectively. For GPU, time required
for memory I/O is not measured. Computation times required
to perform S = 6 sweeps of JA are tabulated in Table 1 for
various matrix sizes, N . FPGA results for N > Nmax are es-
timated by using the rationale that it would take (N/Nmax)

2

times more to solve a larger matrix by using the block JA [3].
More specifically, the worst-case computation time for FPGA
is calculated by using the equation (15)

t̂FPGA =

(
N

Nmax

)2
1

fmax
S (Nmax − 1) (14 + 4M) ,

(16)
where time required for I/O, i.e. 2N2, is omitted for a fair
comparison with GPU. Risk analyses for a portfolio com-
prised of 16 largest market capitalization stocks listed in Dow
Jones Industrial Average (DJIA) index as of Nov 14, 2012
are implemented on CPU, GPU, and FPGA. The portfolio
rebalancing period is 5 minutes. The historical market data
utilized for experiments runs from Nov 14, 2012 9:30 EST to
Nov 15, 2012 16:00 EST. Capital is allocated among assets
of the portfolio in equal amounts, and empirical correlation
matrix is estimated over a day long time window (78 samples
per day). Calculated risks according to (5) using empirical
correlation matrices eigenfiltered with CPU, GPU and FPGA
implementations of JA are displayed in Fig. 3. RMS value
of discrepancy between risks measured by CPU and GPU
implementations is 55 × 10−6 bps. It is 11.5 × 10−3 bps
between CPU and FPGA implementations.

Remark: Smarter I/O handling may be employed in both
FPGA and GPU implementations. For example, GPU might
use RDMA. Similarly, I/O may be handled by fast memory
with a faster clock adjacent to FPGA chip, and data may be
fed into SA in parallel form. This topic is beyond the scope
of this paper and deserves further study.

6. CONCLUSIONS

We forwarded an FPGA implementation of parallel Jacobi al-
gorithm for real-time eigenanalysis of a matrix. It is used
for eigenfiltering of noisy empirical correlation matrix of an
investment portfolio. We compared performance of the pro-
posed FPGA, CPU and GPU implementations under the same
test conditions. It is shown that FPGA implementation of
eigenfiltering with JA significantly outperforms the others. It
offers fast and scalable risk analysis. We predict that such an
affordable technology will be embedded in risk management
systems of the future.
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