
LOCALLY STATIONARY VECTOR PROCESSES
AND ADAPTIVE MULTIVARIATE MODELING

David S. Matteson, Nicholas A. James, William B. Nicholson and Louis C. Segalini

Cornell University
Department of Statistical Science

1198 Comstock Hall, Ithaca, NY 14853

ABSTRACT

The assumption of strict stationarity is too strong for obser-
vations in many financial time series applications; however,
distributional properties may be at least locally stable in time.
We define multivariate measures of homogeneity to quantify
local stationarity and an empirical approach for robustly es-
timating time varying windows of stationarity. Finally, we
consider bivariate series that are believed to be cointegrated
locally, assess our estimates, and discuss applications in fi-
nancial asset pairs trading.

Index Terms— Cointegration, Homogeneity, Multivari-
ate time series, Nonparametric statistics, Pairs trading

1. INTRODUCTION

1.1. Local Stationarity

Application of time series methods often assumes that obser-
vations obey some form of stationarity. A d-dimensional pro-
cess {Yt}Tt=1 is strictly stationary if

Fy1,...,yk(Y1, . . . , Yk)=Fy1+τ ,...,yk+τ (Y1+τ , . . . , Yk+τ ),

∀k, τ ∈ N, in which F denotes a joint distribution function.
An equivalent condition is that ∀k, τ ∈ N,

φy1,...,yk(s) = φy1+τ ,...,yk+τ (s), ∀s ∈ Rd×k (1)

in which φ denotes a joint characteristic function.
Empirical evidence rejects the assumption of strict sta-

tionarity in many financial applications; however, distribu-
tional properties may be at least locally stable in time. Sev-
eral definitions of locally stationary processes exist. Van Bel-
legem [1], Song and Bondon [2], and Mercurio and Spokoiny
[3] define them as infinite order moving average processes
(MA∞) with time varying coefficients; various coefficient
restrictions control the manner in which the process may
change. Another common definition is stated via a spectral
representation of the process, see Cho and Fryzlewicz [4].

Piecewise stationary processes are a simple example of
locally stationary processes. Here, ∀t, ∃wt ≥ 0, such that all

observations in the interval [t − wt, t] are a stationarity pro-
cess, in whichwt defines a one-sided window of homogeneity
at t. The MA∞ representations each include piecewise sta-
tionary processes. Any locally stationary process can be ap-
proximated arbitrarily well by piecewise stationary processes,
see Cho and Fryzlewicz [4]. As such, adaptively identifying
wt is our goal.

1.2. Local Cointegration

A bivariate process Xt = (x1,t, x2,t)′ is cointegrated if (i)
each component is I(1) (unit root nonstationary); and (ii)
∃β 6= 0 such that x1,t − βx2,t is I(0) (unit root station-
ary). The short-run dynamics of a cointegrated system may
be examined via an error correction model (ECM). By the
Engle-Granger representation theorem, this exists if and only
if the process is cointegrated. Following Tsay [5], for a bivari-
ate I(1) process Xt, with cointegrating vector β = (1,−β)′,
we consider the one lag ECM

∆Xt = µ + αβ′Xt−1 + Φ∆Xt−1 + εt (2)

in which ∆Xt = Xt − Xt−1; εt
iid∼ (0,Σ); and µ,α,Φ,Σ

are constant matrices.
The cointegrating vector β characterizes the dynamic re-

lationship between the components of Xt. Traditionally, it
is assumed to be constant over time, but a useful extension
in some applications allows for time variation. Hansen [6]
provides a test for parameter instability in cointegrated rela-
tionships, and Hansen [7] generalizes cointegration to a set-
ting with nonstationary variance. Harris et. al. [8] extends
Hansen’s work to characterize stochastic cointegration. Park
and Hahn [9] develop a nonparametric approach for modeling
time varying cointegration coefficients. Bierens and Martins
[10] define a time varying ECM. Xiao [11] considers func-
tional coefficient cointegration models.

Limited prior research explicitly considers local cointe-
gration. A bivariate process Xt is locally cointegrated with
respect to a window of homogeneity wt if ∀t, ∃βt 6= 0 such
that ut = x1,t − βtx2,t is I(0), and Xt is I(1), within the
interval [t − wt, t]. Cardinali and Nason [12] introduce the
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more general notion of costationarity. The components ofXt

are costationary if there exist “deterministic, complexity con-
strained sequences” {at} and {bt} such that atx1,t + btx2,t

is a stationary process. Unfortunately, unique solutions may
not exist, and no procedure is currently available to identify
which is best.

2. MEASURING HOMOGENEITY

Let Z1, . . . , ZT ∈ Rd be a sequence of vector observations
with E|Zt|2 < ∞, ∀t. Let A and B denote two disjoint sub-
sets of {Zt}, each with contiguous observations. Matteson
and James [13] show that for independent sequences, a non-
negative divergence measure based on characteristic functions
can be used to consistently estimate arbitrary changes in dis-
tribution. Here, we similarly propose measuring divergence
in distribution with respect to empirical characteristic func-
tions φ̂. A first order divergence measure D̂(A,B;α) is de-
fined as∫

Rd
|φ̂A(s)− φ̂B(s)|2

(
2π

d
2 Γ( 2−α

2 )
α2αΓ(d+α2 )

|s|d+α
)−1

ds, (3)

for some α ∈ (0, 2). We use α = 1 in Section 3.
This may easily be extended to higher orders by jointly

considering lagged values of the process. For example, a sec-
ond order measure considers two disjoint subsets of the pro-
cess {(Z ′t, Z ′t−1)′} ∈ R2d, evaluated analogously to Equation
(3). When the observations within each subset are homoge-
neous, the first order measure may be used to test Equation (1)
at a particular τ , for k = 1, while the second order measure
simultaneously considers k = 1, 2.

We apply this divergence measure to identify a win-
dow of homogeneity at time t by first dividing the series
into K + 1 subsets, each of size δ ≥ 2, as follows: let
A = {Zt−δ+1, . . . , Zt} and, given a strictly increasing se-
quence {di} ∈ N, let Bi = {Zt−2δ+2−di , . . . , Zt−δ+1−di}.
Here, A is disjoint from each Bi, but the Bi may not be
disjoint. We then iteratively test for homogeneity between
subsets A and Bi for i = 1, 2, ...,K, as detailed in Sec-
tion 2.1. If the null hypothesis of homogeneity between
A and Bi is rejected, the procedure terminates and returns
wt = max(δ, δ − 1 + di); otherwise, we increase to index
i+ 1 and repeat.

2.1. Testing

In this section we outline a testing procedure tailored for a
bivariate series {Xt} that is believed to be cointegrated lo-
cally. We first assume that at time t the local cointegration
conditions hold for the interval [t − δ + 1, t], such that both
Zt = ∆Xt and ut = x1t − βx2t are stationary. Here, β is
estimated using ordinary least squares (OLS) over this inter-
val, as discussed in Section 3. We now construct the subset A

of {Zt}, as in the previous section, and analogously construct
a subset C of {ut}. Similarly, we construct the subsets Bi
of {Zt}, as well as corresponding subsets Di of {ut}. Note
that the subsets Di are based on the original estimate of β.
Finally, we define a joint test statistic as

D̂i = D̂(A,Bi;α) + D̂(C,Di;α). (4)

The distribution of D̂i under the dual homogeneity null
hypothesis is unknown; we propose to approximate it via sim-
ulation. We consider the serial dependence of Zt and ut via
a VAR(1) and AR(1) model, respectively. We estimate the
mean and variance parameters for each sequence via OLS, us-
ing the subsets A and C, respectively. Based on these param-
eter estimates, we generate new sequences {Z∗t } and {u∗t },
with normally distributed errors. The series are initialized at
Z∗t−2δ+2−di = Zt−2δ+2−di and u∗t−2δ+2−di = ut−2δ+2−di .
This is repeated R times, and for the rth simulation, we cal-
culate D̂(r)

i = D̂(A∗, B∗i ;α) + D̂(C∗, D∗i ;α), analogous to
Equation (4). Finally, we calculate an approximate p-value
for D̂i as #{r : D̂i ≤ D̂(r)

i }/R.

3. APPLICATION

We apply the proposed adaptive window estimation method
to potentially cointegrated stocks prices. We consider the
adjusted daily closing stock prices for Coca-Cola (KO) and
Pepsi (PEP), Hewlett-Packard (HPQ) and Dell (DELL), Wal-
Mart (WMT) and Target (TGT), and Chevron (CVX) and
Exxon Mobil (XOM). For each of these pairs we perform
analysis for the time period January 2007 through Novem-
ber 2012. The adjusted daily closing prices are shown in
Figures 1(a) and 2(a)(b)(c), respectively. We use δ = 30,
di = i, R = 100 and 0.10 as the significance level for our
testing. When applied iteratively, the significance level only
corresponds to the individual marginal tests.

We used OLS to perform our procedure instead of the
maximum likelihood method of Johansen [14] due to the lat-
ter’s irregular finite sample properties. Phillips [15] remarks
that in small samples, the maximum likelihood estimator of
the cointegrating vector has no finite moments, which can
lead to extremely large cointegration coefficients.

For each pair, we perform our estimation procedure over
each locally stationary window estimate [t− wt, t], shown in
Figures 1(b) and 2(d)(e)(f). For the KO-PEP pair, the val-
ues of the local cointegrating coefficient β̂(t, wt), an estimate
over a fixed window length β̂(t, w̄ = 68), as well as a cumu-
lative window β̂t with [1, t], are shown in Figure 1(c).

We perform a Dickey Fuller test to provide an additional
check that the cointegrating vector produces an I(0) process.
As stated in Zivot [16], the Dickey Fuller test examines the
cointegrated series {ût} and tests the hypotheses H0 : ût ∼
I(1) versus H1 : ût ∼ I(0). It should be noted since the test
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Fig. 1. (a) The Pepsi (PEP) and Coca-Cola (KO) adjusted daily closing stock prices for January 2007 through November 2012;
(b) [t − wt, t], our estimated window of local stationarity at times t; (c) estimated local cointegrating coefficient β̂(t, wt) over
locally stationary windows [t − wt, t], β̂(t, w̄), estimated over a fixed width window [t − w̄, t] using width 68, the mean of
wt, and β̂t, the cointegrating coefficient using all available data up to time t; (d) Dickey-Fuller test statistic over each locally
stationary window, along with 1, 5, and 10 percent critical values, which are used to confirm whether the cointegrated process
is unit root stationary over each interval [t− wt, t].

is residual based, the distribution of the test statistic is non-
standard and follows a “Dickey Fuller Table.” Figure 1(d)
shows the Dickey-Fuller test statistic for the KO-PEP series,
along with the 10, 5, and 1 percent critical values. Since large
negative values provide evidence for rejection of H0, the test
implies that {ût} has extended periods of local stationarity.

3.1. Pairs trading

Pairs trading is a strategy that was developed in the 1980s at
Morgan Stanley, and elsewhere. It involves selecting a pair of
stocks that have correlated prices, then buying the relatively
cheaper stock, while shorting the relatively expensive stock.
The positions are entered when the prices have diverged and
exited once the prices converge.

Although correlated stock prices indicate a linear associa-
tion over time, there is no guarantee divergent prices will nec-
essarily converge. However, the relative prices, or the spread
ut, for pairs that are cointegrated will have an equilibrium;
mean reversion of ut may be used to improve trading deci-
sions.

Several authors have proposed various execution criteria.
Dunis et al. [17] open a position when the spread has diverged
from its historical mean by two historical standard deviations.
They exit once the spread has returned to within half of one
standard deviation from the mean. Gatev et al. [18] use a
similar approach. Historical backtesting is conducted to jus-
tify the two standard deviation rule. To rely less on histor-
ical data, Ehrman [19] proposes normalizing the pair’s di-
vergence by taking the absolute pair difference, subtracting
the 10-day moving average and then dividing by the 10-day
standard deviation. Alternatively, the relative strength index,
which indicates oversold and overbought conditions, is ap-
plied in Ehrman [19].

Any of the above strategies may be implemented using
the proposed adaptive window of homogeneity index wt. For
example, at time t we may implement a standard deviation
rule using ût = m̂ean(us : s ∈ [t− wt, t]) and σ̂2

t = v̂ar(us :
s ∈ [t− wt, t]). Define a normalized process

ũs =
us − ût
σ̂t

for s ∈ [t− wt + 1, t+ δ].
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Fig. 2. (a),(b),(c) The adjusted daily closing prices from January 2007 through November 2012 of Walmart (WMT) & Target
(TGT), Hewlett Packard (HPQ) & Dell (DELL), and Exxon Mobil (XOM) & Chevron (CVX), respectively; (d),(e),(f) the
estimated window of local stationarity [t−wt, t], at times t, for WMT & TGT, HPQ & DELL, and XOM & CVX, respectively.

Then, we may enter a position if |ũt| > 2, and exit at s >
t once |ũs| < 0.5, |ũs| > 3, or s = t + δ, whichever is
sooner. This strategy may similarly be implemented using a
fixed width window [t − w̄, t] or a cumulative window [1, t],
for comparison.

First, for the KO-PEP series we compare the results of
this trading strategy for the three window methods. The first
70 observations are used for initialization, and we use δ =
30. For a fixed width window, w̄ = 68, we entered a trading
position on 14.7% of the 1450 days; the mean return per trade
was -7% and the mean return per day was -3%. Using the
cumulative window [1, t], we entered a position on 26.8% of
the days; the mean return per trade was 12% and the mean
return per day was -2%. Finally, when using the adaptively
estimated window [t − wt, t] via the proposed approach we
entered a trading position on 15.7% of the days; the mean
return per trade was 21% and the mean return per day was 2%.
Positions were held a mean of 7.8 days using the adaptive and
fixed window approaches, and 16.9 days using the cumulative
window.

When applied to the other pairs, similar results were ob-
tained. For these cases, the proposed adaptive window ap-
proach resulted in a higher mean return per trade than when
using either a fixed or cumulative window, see Table 1. The
mean trade durations in days are shown in Table 2. In most
cases, these higher mean returns were obtained while holding
positions for shorter periods.

Mean Return (per trade)
Window/Pair KO-PEP HPQ-DELL WMT-TGT XOM-CVX

Fixed -7.0% 2.5% -6.6% 0.9%
Cumulative 12.0% -0.9% -0.1% -1.8%

Adaptive 21.0% 4.4% 1.1% 43.0%

Table 1. The mean return (per trade) for the three window
methods on the selected pairs.

Mean Trade Duration (days)
Window/Pair KO-PEP HPQ-DELL WMT-TGT XOM-CVX

Fixed 7.8 9.7 9.7 8.5
Cumulative 16.9 23.0 13.4 17.8

Adaptive 7.8 8.2 8.3 10.6

Table 2. The mean trade duration (days) for the three window
methods on the selected pairs.

4. CONCLUSION

We have proposed a novel method for estimating a window
of homogeneity and extended this approach for adaptively
estimating a window of local cointegration. We apply this
approach to a simple pairs trading strategy and find that an
adaptive window outperforms fixed and cumulative windows,
for the data considered. The realized returns are complexly
related and approximate risk adjustment requires additional
consideration; further analysis is necessary to fully assess the
suitability of this approach for pairs trading in general.
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