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ABSTRACT
We study how to invest optimally in a stock market having a
finite number of assets from a signal processing perspective.
In particular, we introduce a portfolio selection algorithm
that maximizes the expected cumulative wealth in i.i.d. two-
asset discrete-time markets where the market levies propor-
tional transaction costs in buying and selling stocks. This is
achieved by using “threshold rebalanced portfolios”, where
trading occurs only if the portfolio breaches certain thresh-
olds. Under the assumption that the relative price sequences
have log-normal distribution from the Black-Scholes model,
we evaluate the expected wealth under proportional trans-
action costs and find the threshold rebalanced portfolio that
achieves the maximal expected cumulative wealth over any
investment period.

Index Terms— Portfolio management, threshold rebal-
ancing, transaction cost, discrete-time market, continuous dis-
tribution.

1. INTRODUCTION
Recently financial applications attracted a significant interest
from the signal processing community since the recent global
crises demonstrated the importance of sound financial mod-
eling and reliable data processing [1, 2]. Stock markets pro-
duce vast amount of temporal data ranging from stock prices
to interest rates making them ideal mediums to apply signal
processing methods. Furthermore, due to the integration of
high performance, low-latency computing recourses and fi-
nancial data collection infrastructures, a wide range of signal
processing algorithms could be readily leveraged with full po-
tential in stock markets. This paper specifically focuses on the
portfolio selection problem, which is one the most important
financial applications and has already attracted substantial in-
terest from the signal processing community [3–8].

Determination of the optimum portfolio and the best port-
folio rebalancing strategy that maximize wealth in discrete-
time markets with no transaction fees is heavily investigated
in information theory [9, 10], machine learning [11–13] and
signal processing [14–17] fields. Assuming that the portfolio
rebalancings, i.e., adjustments to the portfolio by buying and
selling stocks, require no transaction fees and with some fur-
ther mild assumptions on the stock prices, the portfolio that
achieves the maximum expected wealth is shown to be a con-
stant rebalanced portfolio (CRP) [10, 18]. A CRP is a portfo-
lio strategy where the distribution of funds over the stocks are

reallocated to a predetermined structure, also known as the
target portfolio, at the start of each investment period. How-
ever, we emphasize that maintaining a CRP requires poten-
tially significant trading due to possible rebalancings at each
investment period [14]. As shown in [14], even the perfor-
mance of the best CRP is severely affected by moderate trans-
action fees rendering CRPs ineffective in real life stock mar-
kets. Clearly, one can potentially obtain significant gain in
wealth by including unavoidable transactions fees in the mar-
ket model and perform reallocation accordingly.

In these lines, the optimal portfolio selection prob-
lem under transactions costs is extensively investigated for
continuous-time markets [19–22], where growth optimal poli-
cies that keep the portfolio in closed compact sets by trading
only when the portfolio hits the compact set-boundaries are
introduced. It has been shown in [23] that under certain
mild assumptions on the sequence of stock prices, similar no
trade zone portfolios achieve the optimal growth rate even for
discrete-time markets under proportional transaction costs.
For markets having two stocks, i.e., two-asset stock markets,
these no trade zone portfolios correspond to threshold port-
folios, i.e., the no trade zone is defined by thresholds around
the target portfolio. In particular, unlike a calendar rebalanc-
ing portfolio, e.g., a CRP, a threshold rebalanced portfolio
(TRP) rebalances by buying and selling stocks only when the
portfolio breaches the preset boundaries, or “thresholds”, and
otherwise does not perform any rebalancing. Intuitively, by
limiting the number of rebalancings due to these non rebal-
ancing regions, threshold portfolios are able to avoid hefty
transactions costs associated with excessive trading unlike
calendar portfolios. Although TRPs are shown to be opti-
mal in i.i.d. discrete-time two-asset markets (under certain
technical conditions) [23], finding the TRP that maximizes
the expected growth of wealth under proportional transaction
costs is not solved, except for basic scenarios [23], to the best
of our knowledge.

In this paper, we first evaluate the expected wealth
achieved by a TRP over any finite investment period given
any target portfolio and threshold for two-asset discrete-time
stock markets subject to proportional transaction fees. We
emphasize that we study the two-asset market for notational
simplicity and our derivations can be readily extended to
markets having more than two assets as provided in the paper
where needed. We consider i.i.d. discrete-time markets repre-
sented by the sequence of price relatives (defined as the ratio
of the closing prices of stocks in consecutive days), where

8717978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



the sequence of price relatives follow log-normal distribu-
tions. Note that the log-normal distribution is the assumed
statistical model for price relative vectors in the well-known
Black-Scholes model [24, 25] and this distribution is shown
to accurately model real life stock prices by many empirical
studies [24]. Under this setup, we provide an iterative relation
that efficiently and recursively calculates the expected growth
over any period in any i.i.d. discrete-time market. This ex-
pected growth is then optimized by a brute force method to
yield the optimal target portfolio and threshold to maximize
the expected wealth over any investment period. We also
illustrate the performance of our algorithm under different
scenarios demonstrating its effectiveness.

We begin with the detailed description of the market and
the TRPs in Section 2. We then calculate the expected wealth
using a TRP in an i.i.d. two-asset discrete-time market un-
der proportional transaction costs over any investment period
in Section 3. We provide an iterative relation to recursively
calculate the expected wealth growth. The paper is then con-
cluded with the simulations of given algorithm in Section 4.

2. PROBLEM DESCRIPTION
In this paper, all vectors are column vectors and represented
by lower-case bold letters. Consider a market with m stocks
and let {x(t)}t≥1 represent the sequence of price relative vec-
tors in this market, where x(t) = [x1(t), x2(t), . . . , xm(t)]T

with xi(t) ∈ R+ for i ∈ {1, 2, . . . ,m} such that xi(t) rep-
resents the ratio of the closing price of the ith stock for the
tth trading period to that from the (t − 1)th trading period.
At each investment period, say period t, b(t) represents the
vector of portfolios such that bi(t) is the fraction of money in-
vested on the ith stock. We allow only long-trading such that∑m
i=1 bi(t) = 1 and bi(t) ≥ 0. After the price relative vector

x(t) is revealed, we earn bT (t)x(t) at the period t.
We denote a TRP with a target vector b and a threshold ε

(with certain abuse of notation) as “TRP with (b, ε)”. For a

sequence of price relatives vectors xn
4
= [x(1),x(2), . . . ,x(n)]

with x ∈ R+
m, a TRP with (b, ε) rebalances the portfolio to

b at the first time τ satisfying

bj
∏τ
t=1 xj(t)∑m

k=1 bk
∏τ
t=1 xk(t)

/∈ [bj − εj , bj + εj ] (1)

for any j ∈ {1, 2, . . . ,m}, thresholds εj , and does not re-
balance otherwise, i.e., while the portfolio vector stays in the
no rebalancing region. Starting from the first period of a no
rebalancing region, i.e., where the portfolio is rebalanced to
the target portfolio b, say t = 1 for this example, the wealth
gained during any no rebalancing region is given by

S(xn|bn ∈ Encn ) =

m∑
k=1

bk

n∏
t=1

xk(t), (2)

where bn = [b(1),b(2), . . . ,b(n)], b(t) is the portfolio at
the period t and Encn is the length n no rebalancing region
defined as

Encn = {bn | b(1) = b, bj(t) ∈ (bj − εj , bj + εj),

j ∈ {1, 2, . . . ,m}, t ∈ {1, 2, . . . , n}}. (3)

A TRP pays a transaction fee when the portfolio vector leaves
the predefined no rebalancing region, i.e., goes out of the no
rebalancing region Encn , and rebalanced back to its target port-
folio vector b. Since the TRP may avoid constant rebalanc-
ing, it may avoid excessive transaction fees while securing the
portfolio to stay close to the target portfolio b, when we have
heavy transaction costs in the market.

For notational clarity, in the remaining of the paper, we
assume that the number of stocks in the market is equal to 2,
i.e., m = 2. Note that our results can be readily extended
to the case when m > 2. Then, the threshold rebalanced
portfolios are described as follows.

Given a TRP with target portfolio b = [b, 1 − b]T with
b ∈ [0, 1] and a threshold ε, the no rebalancing region of a
TRP with (b, ε) is represented by (b− ε, b+ ε). Given a TRP
with (b − ε, b + ε), we only rebalance if the portfolio leaves
this region, which can be found using only the first entry of
the portfolio (since there are two stocks), i.e., if b1,old(t) /∈
(b− ε, b+ ε). In this case, we rebalance b1,old(t) to b.

In this paper, we assume that the price relative vectors
have a log-normal distribution following the well-known
Black-Scholes model [24]. This distribution, which is ex-
tensively used in the financial literature, is shown to model
empirical price relative vectors close to accurate in many
tests [26]. Hence, we assume that x(t) = [x1(t), x2(t)]T has
an i.i.d. log-normal distribution with mean µ = [µ1, µ2]
and standard deviation σ = [σ1, σ2], respectively, i.e.,
x(t) ∼ lnN (µ,σ2).

3. THRESHOLD REBALANCED PORTFOLIOS
In this section, we analyze the TRPs in a discrete-time mar-
ket with proportional transaction costs as defined in Section 2.
We first introduce an iterative relation, as a theorem, to recur-
sively evaluate the expected achieved wealth of a TRP over
any investment period. The terms in this iterative equation
are calculated using a certain form of multivariate Gaussian
integrals. We then use the given iterative equation to find the
optimal ε and b that maximize the expected wealth over any
investment period.

3.1. An Iterative Relation to Calculate the Expected
Wealth
In this section, we introduce an iterative equation to evaluate
the expected cumulative wealth of a TRP with (b − ε, b + ε)
over any period n, i.e., E[S(n)]. For a TRP with (b−ε, b+ε),
any investment scenario can be decomposed as the union of
consecutive no-crossing blocks such that each rebalancing in-
stant, to the initial b, signifies the end of a block. Hence,
based on this observation, the expected gain of a TRP between
consecutive crossings, i.e. the gain during the no-rebalancing
regions, is directly proportional to the overall wealth growth.
Therefore, in the next we first calculate the conditional ex-
pected gain of a TRP over no rebalancing regions and then
introduce the iterative relation based on these derivations.

For a TRP with (b − ε, b + ε), we call a no rebalancing
region of length n as “period nwith no-crossing” such that the
TRP with the initial and target portfolio b = [b, 1 − b] stays
in the (b− ε, b+ ε) interval for n− 1 consecutive investment
periods and crosses one of the thresholds at the nth period.
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We next calculate the expected gain of a TRP over any no-
crossing period as follows.

The wealth growth of a TRP with (b−ε, b+ε) for a period
τ with no-crossing can be written as [27]

S(τ) = ζ1

τ∏
t=1

[x1(t)] + ζ2

τ∏
t=1

[x2(t)], (4)

where ζ1
4
= b− 2c(b− b2), ζ2

4
= 1− b+ 2c(b− b2) for b+ ε

hitting and ζ1
4
= b+2c(b−b2), ζ2

4
= 1−b−2c(b−b2) for b−ε

hitting and c represents the symmetrical commission cost, to
rebalance two stocks, i.e., b1,old(τ + 1) to b, and b2,old(τ +
1) = 1−b1,old(τ+1) to 1−b. Thus, the conditional expected
gain of a TRP conditioned on that the portfolio stays in a no
rebalancing region until the last period of the region can be
found by calculating the expected value of (4).

In order to calculate the expected wealth E[S(n)] itera-
tively, let us first define the variable R(τ), which is the ex-
pected cumulative gain of all possible portfolios that hit any
of the thresholds first time at the τ th period, i.e.,

R(τ) = E
[
S(τ)

∣∣∣bτ ∈ E fcτ ] , (5)

where E fcτ denotes the set of all possible portfolios with initial
portfolio b and that stay in the no rebalancing region for τ −1
consecutive periods and hits one of the b−ε or b+ε boundary
at the τ th period, i.e.,

E fcτ
4
= {bτ ∈ Bτ (b, ε) | b(1) = b, b(i) ∈ (b− ε, b+ ε)

∀i ∈ {2, . . . , τ − 1}, b(τ) /∈ (b− ε, b+ ε)}. (6)

Here, Bτ (b, ε) is defined as the set of all possible threshold
rebalanced portfolios with initial and target portfolio b and a
no rebalancing interval (b− ε, b+ ε). Similarly we define the
variable T (τ), which is the expected growth of all possible
portfolios of length τ with no threshold crossings, i.e.,

T (τ) = E
[
S(τ)

∣∣∣bτ ∈ Encτ ] , (7)

where Encτ denotes the set of portfolios with initial portfolio
b and that stay in the no rebalancing region for τ consecutive
periods, i.e.,1

Encτ
4
= {bτ ∈ Bτ (b, ε) | b(1) = b, b(i) ∈ [b− ε, b+ ε]

∀i ∈ {2, . . . , τ}}. (8)

Given the variables R(τ) and T (τ), we next introduce
a theorem that iteratively calculates the expected wealth
growth of a TRP over any period n. Hence, to calculate
the expected achieved wealth, it is sufficient to calculate
R(τ), T (τ), threshold crossing probabilities P

(
bn ∈ E fcn

)
and P (bn ∈ Encn ), which are explicitly evaluated in the next
section.

1This is the special case of the definition in (3) for m = 2.

Theorem 3.1 The expected wealth growth of a TRP (b−ε, b+
ε), i.e., E[S(n)], over any i.i.d. sequence of price relative
vectors xn = [x(1),x(2), . . . ,x(n)], satisfies

E[S(n)] =

n∑
i=1

P (E fci )R(i)E[S(n− i)] + P (Encn )T (n), (9)

where we define S0 = 1, R(n) in (5), T (n) in (7), E fci in (6)
and Encn in (8).

The proof of the Theorem 3.1 can be found in [27]. Theo-
rem 3.1 provides a recursion to iteratively calculate the ex-
pected wealth growth E[S(n)], when R(τ) and T (τ) are ex-
plicitly calculated for a TRP with (b − ε, b + ε). Hence, if
we can obtain P

(
E fcτ
)
R(τ) and P (Encτ )T (τ) for any τ , then

(9) yields a simple iteration that provides the expected wealth
growth for any period n. We next give the explicit definitions
of the events bτ ∈ E fcτ and bτ ∈ Encτ in order to calculate
the conditional expectations R(τ) and T (τ). Following these
definitions, we calculate P

(
E fcτ
)
R(τ) and P (Encτ )T (τ) to

evaluate the expected wealth growthE[S(τ)], iteratively from
Theorem 3.1 and find the optimal TRP, i.e., optimal b and ε,
by using a brute force search.

We next provide the conditions for the market portfolios
to cross the corresponding thresholds and calculate the prob-
abilities for the events bτ ∈ E fcτ and bτ ∈ Encτ . We then
calculate the conditional expectations R(n) and T (n) as cer-
tain multivariate Gaussian integrals.

Hence, we can explicitly describe the event that the mar-
ket threshold portfolio (b − ε, b + ε) does not hit any of the
thresholds for τ consecutive periods, bτ ∈ Encτ , as the inter-
section of the events as [27]

bτ ∈ Encτ ≡
τ⋂
i=1

{γ2Π1(i) ≤ Π2(i) ≤ γ1Π1(i)}, (10)

where Π1(i)
4
=
∏i
t=1 x1(t), Π2(i)

4
=
∏i
t=1 x2(t) ,γ1

4
=

b(1−b+ε)
(1−b)(b−ε) and γ2

4
= b(1−b−ε)

(1−b)(b+ε) . Similarly, the event of the
market threshold portfolio (b − ε, b + ε) hitting any of the
thresholds first time at the τ -th period, bτ ∈ E fcτ , can be de-
fined as the intersections of the events [27]

bτ ∈ E fcτ ≡
τ−1⋂
i=1

{γ2Π1(i) ≤ Π2(i) ≤ γ1Π1(i)}

⋂ [
{Π2(τ) ≥ γ1Π1(τ)}

⋃
{Π2(τ) ≤ γ2Π1(τ)}

]
, (11)

yielding the explicit definitions of the events bτ ∈ E fcτ in (11)
and bτ ∈ Encτ in (10). The definitions of bτ ∈ Encτ and
bτ ∈ E fcτ can be readily extended for the case m > 2 by
using the updated definitions of Π1,Π2, . . . ,Πm.

Using the quantitative definitions of the events bτ ∈ E fcτ
and bτ ∈ Encτ , we can express P (Encτ )T (τ) as [27]

P (Encτ )T (τ) =

∫ ∞
0

∫ γ1π1

γ2π1

(bπ1 + (1− b)π2) P (Π1(τ) = π1,

Π2(τ) = π2)P
(

Στ2 ∈ [κ− θ1, κ− θ2],Στ3 ∈ [κ− θ1, κ− θ2],

. . . ,Σττ ∈ [κ− θ1, κ− θ2]
)

dπ2dπ1, (12)
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which follows from the definition of Σki where κ
4
= ln π2

π1
.

The first probability in (12) can be calculated as [27]

P (Π1(τ) = π1,Π2(τ) = π2) =
1

π1

√
2π τσ2

1

e
− (lnπ1−τµ1)2

2 τσ2
1

+
1

π1

√
2π τσ2

2

e
− (lnπ2−τµ2)2

2 τσ2
2 (13)

which follows since Π1(τ)
4
=
∏τ
t=1 x1(t) and Π2(τ)

4
=∏τ

t=1 x2(t) and we have Π1(τ) ∼ lnN (τµ1, τσ
2
1) and

Π2(τ) ∼ lnN (τµ2, τσ
2
2).

Similarly we can express P
(
E fcτ
)
R(τ) as [27]

P
(
E fcτ
)
R(τ) =

∫ ∞
0

∫ ∞
γ1π1

(ζ1π1 + ζ2π2) P (Π1(τ) = π1,

Π2(τ) = π2)P
(

Στ2 ∈ [κ− θ1, κ− θ2],Στ3 ∈ [κ− θ1, κ− θ2]

, . . . ,Σττ ∈ [κ− θ1, κ− θ2]
)

dπ2dπ1 +

∫ ∞
0

∫ γ2π1

0

(ζ3π1 + ζ4π2)

P (Π1(τ) = π1,Π2(τ) = π2)P
(

Στ2 ∈ [κ− θ1, κ− θ2],

. . . ,Σττ ∈ [κ− θ1, κ− θ2]
)

dπ2dπ1, (14)

where the probability P (Π1(τ) = π1,Π2(τ) = π2) can be
obtained via (13).

Hence to calculate P (Encτ )T (τ) and P
(
E fcτ
)
R(τ), we

need to calculate the probability P
(

Στ2 ∈ [κ − θ1, κ −

θ2],Στ3 ∈ [κ− θ1, κ− θ2], . . . ,Σττ ∈ [κ− θ1, κ− θ2]
)

in (12)
and (14). We emphasize that the given multivariate probabil-
ity cannot be calculated in a closed form [28], however there
are some algorithms proposed in the literature to calculate
it with small errors. In this paper, we use the randomized
Quasi-Monte Carlo (QMC) algorithm, provided in [27, 28].

4. SIMULATIONS
In this section, we illustrate the performance our algorithm
under different scenarios. We use our algorithm over the his-
torical data set collected from the New York Stock Exchange
over a 22-year period [9,14] and illustrate the average perfor-
mance. In these simulations, we compare the performance of
our algorithm with portfolio selection strategies from [9, 14,
29].

To remove any bias on a particular stock pair, we show
the average performance of the TRP algorithm over randomly
selected stock pairs from the historical data set from [9]. The
total set includes 34 different stocks, where the Iroquois stock
is removed due to its peculiar behavior. We first randomly se-
lect pairs of stocks and invest using: the sequential TRP al-
gorithm with the sequential ML estimators, the Cover’s uni-
versal portfolio algorithm, the Iyengar’s universal portfolio
algorithm and the SCRP algorithm. The sequential selection
of the optimal TRP parameters are performed similar to the
previous case, i.e., we use ML estimators on an investment
block of 1000 days and use the calculated optimal TRP in the
next block of 1000 days. For each stock pair, we simulate the
performance of the algorithms over 4651 days. In Fig. 1, we
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Fig. 1. Average performance of various portfolio invest-
ment algorithms on independent stock pairs under a moderate
(c=0.01) and a hefty transaction cost (c=0.025).

present the wealth achieved by these algorithms, where the
results are averaged over 10 independent trials. We present
the achieved wealth over random sets of stock pairs under a
hefty transaction cost c = 0.025 and a moderate transaction
cost c = 0.01, where c is the fraction paid in commission for
each transaction, i.e., c = 0.01 is a 1% commission, in Fig. 1.
We observe that the performance of the TRP algorithm read-
ily outperforms the other algorithms for different transaction
costs on this historical data set. Moreover, the relative gain is
larger for the large transaction cost since the TRP approach,
with the optimal parameters chosen as in this paper, can hedge
more effectively against the transaction costs.

5. CONCLUSION
In this paper, we studied an important financial application,
the portfolio selection problem, from a signal processing per-
spective. We investigated the portfolio selection problem in
i.i.d. discrete-time markets having a finite number of assets,
when the market levies proportional transaction fees for both
buying and selling stocks. We introduced algorithms based
on threshold rebalanced portfolios that achieve the maximal
growth rate when the sequence of price relatives have the
log-normal distribution from the well-known Black-Scholes
model [24]. Under this setup, we provide an iterative relation
that efficiently and recursively calculates the expected wealth
in any i.i.d. market over any investment period. As predicted
from our derivations, we significantly improve the achieved
wealth over portfolio selection algorithms from the literature
on the historical data set from [9].
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