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ABSTRACT
In this paper, we propose a novel approach for decomposing hedge
fund returns onto observable risk factors. We utilize a vector
stochastic-volatility model to extract the time-varying exposure of
low frequency hedge fund returns on high frequency market data.
We implement the estimation by using particle filtering and the
concept of Rao-Blackwellization. With the latter, we remove all
the static parameters of the model and thereby reduce the dimension
of the parameter space for particle generation. Thus, we are able
to obtain accurate estimates of the posterior distributions of the
model states. For our model, this reduction is significant because
the number of static parameters is large. We use the proposed
model to analyze hedge fund performance and to optimally replicate
hedge fund strategies economically. We demonstrate the validity and
effectiveness of the method by computer simulations.

Index Terms— stochastic volatility, particle filtering, hedge
fund, risk-management, VaR, CAPM, beta

1. INTRODUCTION

The hedge fund industry has grown into a large sector of the financial
markets with over $2.5 trillion of assets under management. As
such, analyzing hedge fund returns has enormous importance for
investors [10]. In particular, understanding whether or not a hedge
fund is simply taking so-called market exposure (e.g., owning the
stock market) or adding incremental value is a critical task. This
is especially important in light of the large fees that hedge funds
usually charge (2% of assets under management and 20% of profits)
[16]. To complicate matters, hedge fund returns are typically only
available on a monthly basis and there is a limited history. Investors,
such as fund-of-funds, have the arduous task of building portfolios
of hedge fund strategies based on these limited and low frequency
observations. As such, it is desired to estimate risk factors based on
high frequency market observables and reverse engineer hedge fund
returns onto those factors [15]. By doing so, portfolios of hedge fund
strategies can be optimized while constraining market risk exposures
[1, 2].

The model that we propose to investigate will decompose the
risk of various hedge fund strategies based on monthly return
observations and on common factors that are observable at a higher
frequency (e.g., daily, or intra-day). Specifically, we will jointly
model the risk-factors (e.g., stock and bond market returns) and the
asset returns (e.g., a hedge fund strategy) in a fat-tailed, stochastic
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volatility environment implemented with a Bayesian approach via
a Rao-Blackwellized particle filtering (PF) [4]. The hedge fund
estimation problem, for a one-factor setting, was tackled in [12] and
in this paper we extend that analysis to multiple factors along with
its application.

One of the fundamental tenets in finance is that an asset’s returns
are proportional to risk and that risk can be decomposed into risk-
factors (e.g., CAPM or APT) [14]. For example, let the return of the
overall stock market be rm,t and the return of one particular hedge
fund strategy be rh,t. Then we write

rh,t = αh + βhrm,t + vt. (1)

The first term αh is the so-called idiosyncratic, or hedge
fund specific return (“alpha”), which might be, for example,
representative of a fund manager’s skill. This is a sought-after
commodity which one seeks to maximize. The second term βh

measures the sensitivity of the hedge fund return to the market (e.g.,
stock) and is not due to any specific skill or algorithm on the part of
the fund. This “beta” term does not add value since it can be easily
and cheaply replicated using liquid market instruments. Finally, vt
is the residual hedge fund specific risk. This formulation highlights
that a hedge fund’s performance, and fees they charge, should not
be purely based on observed returns since “mimicking” the market
does not represent added value and that performance statistics need
to be adjusted accordingly [13].

The model introduced in this paper will be based on this basic
tenet, but with multiple factors and with the time-varying states of
the model being hidden. This implies the need to estimate those
hidden random variables from observed data. In particular, we will
assume that (1) the unknown states, including the log-variance of
the noise, form a vector autoregressive process and (2) the observed
returns are functions of the state. We utilize a particle filter and, since
the model contains many unknown static parameters, we employ
Rao-Blackwellization (RB). In this vector setting, RB reduces
the unknown parameter space dimension significantly, leading to
improved performance. This is crucial as we increase the number of
factors. We show that we can implement PF by generating particles
of the dynamic states from multivariate or univariate Student t
distributions whose parameters are continuously updated during the
tracking. Furthermore, with PF we can readily obtain samples from
predictive distributions of the returns of the model. Our model can
be used to assess hedge fund performance, divorced from market
exposures, as well as to replicate hedge fund returns and to optimally
design portfolios with predesigned risk factor exposures.

The problem is formally defined in the next section. In Section
3, we provide our solution based on RB PF. Section 4 contains
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simulation results that demonstrate the performance of the proposed
method, and Section 5 concludes the paper.

2. PROBLEM STATEMENT

The vector state process xt = [x1,t ... x7,t]
⊤ ∈ R7×1 is defined as

xt = Θzt−1 +Φut (2)

where zt = [1 x1,t x2,t · · · x7,t]
⊤ and Θ ∈ R7×8 corresponds to:

Θ =



θ1,0 θ1,1 θ1,2 θ1,3 0 0 0 0
θ2,0 θ2,1 θ2,2 θ2,3 0 0 0 0
θ3,0 θ3,1 θ3,2 θ3,3 0 0 0 0
θ4,0 0 0 0 θ4,4 0 0 0
θ5,0 0 0 0 0 θ5,5 0 0
θ6,0 0 0 0 0 0 θ6,6 0
θ7,0 0 0 0 0 0 0 θ7,7


, (3)

with the noise vector ut = [u1,t, ...u7,t]
⊤ ∼ N (0, Cu), Cu ∈ R7×7

defined by

Cu =



1 ρ1 ρ2 0 0 0 0
ρ1 1 ρ3 0 0 0 0
ρ2 ρ3 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, (4)

and Φ = diag[σ1, σ2, · · · , σ7]. All the parameters contained in
Θ,Φ, and Cu are static unknowns. The states xi,t, i = 1, 2, 3
are the log-variances of the stock market, bond market, and hedge
fund returns, respectively. The state x4,t is the beta between the
stock market and the bond market return. The state x5,t is the beta
between the stock market and the hedge fund return, the state x6,t is
the beta between the hedge fund return and the bond market return,
that is uncorrelated to the stock market. Finally, the state x7,t is the
idiosyncratic return of the hedge fund, commonly referred to as α.

We observe a vector of returns r1,t, r2,t, r3,t ∈ R defined by

r1,t = µ1 + ex1,t/2v1,t, (5)

r2,t = µ2 + x4,tr1,t + ex2,t/2v2,t,

r3,t = x7,t + x5,tr1,t + x6,t(r2,t − x4,tr1,t) + ex3,t/2v3,t,

where r1,t is the stock market return, r2,t is the bond market return,
r3,t is the hedge fund return, and vi,t ∼ N (0, 1) with E(vi,tvj,t) =
0 for i, j = 1, 2, 3, i ̸= j. The unknown constants µ1 and µ2 are
the expected stock market and bond market returns. Descriptively,
the hedge fund return, r3,t, consists of the time varying return x7,t

plus two factor returns. The first is associated with the stock market
x5,tr1,t and the second is related to the part of the bond market return
orthogonal to the stock market x6,t(r2,t − x4,tr1,t) . Finally, there
is the idiosyncratic risk for the hedge fund ex3,t/2v3,t.

Our objective is to estimate the state vector, xt, as well
as predict future returns r1,t+1, r2,t+1, r3,t+1, given past returns
r1,1:t, r2,1:t, r3,1:t and the model defined above. To that end, we
want to be able to generate samples from the posterior density
p(xt|r1,1:t, r2,1:t, r3,1:t) and the predictive density p(r1,t+1, r2,t+1,
r3,t+1|r1,1:t, r2,1:t, r3,1:t).

Before we proceed with the proposed method, we comment on
the considered state model. The process equation (2) is a vector

autoregressive model with lag 1, VAR(1), where only the log-
variances (xi,t, i = 1, 2, 3) are coupled. This coupling allows for
potential strong correlations between the variances of the individual
asset return series. For example, it allows for shocks in the stock
market to “bleed” into bond market or hedge fund returns with a
one-step lag. A specific example would be the occurrences in the
fall of 1998, when bond market volatility, caused by the demise of
hedge fund Long-Term Management, fed into increased volatility
in the stock market as well as the overall hedge fund universe. A
similar idea for a univariate SV model was analyzed in [7] where
the authors modeled the leverage effect when volatility in the return
observation fed back into the variance process itself allowing for
shocks in market returns to increase future volatility. While we
allow for coupling between the log-variances, we assume that the
betas, and the idiosyncratic hedge fund returns, are independent from
each other and from the log-variances. While this assumption can
certainly be relaxed, we felt the additional flexibility did not warrant
the increased parameter set size. An area of future research will be to
allow full coupling with, for example, increased volatility potentially
leading to higher betas between asset classes.

3. PROPOSED METHOD

The proposed model is characterized by a 7-dimensional dynamic
state-space with a large number of static parameters captured by the
matrices Θ, Φ, and Cu. The proposed methodology for estimating
all the unknowns of the model is PF, which is based on generating
streams of particles of the unknowns and evaluating them based on
the observations. There are actually three steps that are implemented
in such methods at every time instant, (1) particle generation, (2)
computation of the particle weights, and (3) resampling. The third
step is necessary because it provides the means to remove particles
that are non-promising and avoids situations where practically all the
weight of the particles is concentrated at one particle.

PF needs to take special care for static parameters because it
is designed to track the changes of the unknown parameters. We
also point out that it is always beneficial to reduce the space of the
unknowns where we generate the particles. One way of achieving
this is by analytically integrating out some of the unknowns. In
our model, this can be done with all the static parameters. Thus,
by integrating out the static parameters, we not only resolve the
problem of handling them, but also generate vectors of particles of
much lower dimension, thereby making the exploration of the space
of unknowns much more efficient.

The details of the integration of the static parameters in the state
equation are shown in [8] and [12], so we will not repeat them
here. In these references we provide the equations that are used
for generating particles xt from p(xt|x0:t−1), where x0,1,··· ,t−1 ≡
{x0, x1, · · · , xt−1}. First we assume that at time instant t − 1, we
have the random measure χt−1 = {w(m)

t−1 , x
(m)
0:t−1}Mm=1, where w(m)

t−1

is the weight of the mth particle stream x
(m)
0:t−1, and M is the number

of particles.
We can show that the first three states p(x1:3,t|x(m)

1:3,0:t−1)
have a multivariate Student t distribution and the remaining states,
univariate Student t distributions, i.e.,x

(m)
1:3,t|x1:3,0:t−1 ∼ MSt

(
x1:3,t|ϑ(m)

1:3,t−1, 1,Σ
−1(m)
1:3,t−1, ν1:3,t−1

)
x
(m)
i,t |xi,0:t−1 ∼ St

(
xi,t|ϑ(m)

i,t−1, σ
2(m)
i,t−1, νi,t−1

)
, i = 4, 5, 6, 7,

(6)

where the parameters of these distributions are obtained from
previous data as shown in [8] and [12]. Therefore, once they are
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known, we can readily generate from them particles for the next time
instant.

Once the particles for the time instant t are generated, we
proceed with computing their weights. Since we do resampling in
every time step, we have

w
(m)
t ∝ p(r1,t, r2,t, r3,t|x(m)

0:t , r1,1:t−1, r2,1:t−1, r3,1:t−1)

= p(r3,t|x(m)
0:t , r1,1:t, r2,1:t, r3,1:t−1)

× p(r2,t|x(m)
0:t , r1,1:t, r2,1:t−1, r3,1:t−1)

× p(r1,t|x(m)
0:t , r1,1:t−1, r2,1:t−1, r3,1:t−1). (7)

For the first factor in (7) we have

p(r3,t|x(m)
0:t , r1,1:t, r2,1:t, r3,1:t−1) = N (r3,t| µ̃(m)

r3,t , σ̃
2(m)

r3,t ), (8)

where

µ̃(m)
r3,t = x

(m)
7,t + x

(m)
5,t r1,t + x

(m)
6,t (r2,t − x

(m)
4,t r1,t), (9)

σ̃2(m)
r3,t = ex

(m)
3,t . (10)

The second factor is obtained from

p(r2,t|x(m)
0:t , r1,1:t, r2,1:t−1, r3,1:t−1) =

∫
p(r2,t|µ2, x

(m)
4,t , x

(m)
2,t )

×p(µ2|x(m)
0:t−1, r1,1:t−1, r2,1:t−1)dµ2. (11)

Finally, for the third factor we write

p(r1,t|x(m)
0:t , r1,1:t−1, r2,1:t−1, r3,1:t−1) =

∫
p(r1,t|µ1, x

(m)
1,t )

×p(µ1|r1,1:t−1, x
(m)
1,t−1)dµ1. (12)

The integrations of the unknown parameters µ1 and µ2 in (11) and
(12) can be carried out analytically. As a result, for the weight of the
particle stream m, we can write

log(w
(m)
t ) = log c− 1

2

(
log σ̃(m)2

r1,t + log σ̃(m)2

r2,t + log σ̃(m)2

r3,t

)
−

(
r1 − µ̃

(m)
r1,t

)2

2σ̃
(m)2
r1,t

−

(
r2,t − x

(m)
4,t r1,t − µ̃

(m)
r2,t

)2

2σ̃
(m)2
r2,t

−

(
r3,t − µ̃

(m)
r3,t

)2

2σ̃
(m)2
r3,t

. (13)

where c is a proportionality constant, and

µ̃(m)
r1,t =

(
h⊤
t−1C

(m)−1

1,t−1 ht−1

)−1

h⊤
t−1C

(m)−1

1,t−1 ρ1,t−1, (14)

µ̃(m)
r2,t =

(
h⊤
t−1C

(m)−1

2,t−1 ht−1

)−1

h⊤
t−1C

(m)−1

2,t−1 ρ
(m)
2,t−1, (15)

µ̃(m)
r3,t = x

(m)
7,t + x

(m)
5,t r1,t + x

(m)
6,t (r2,t − x

(m)
4,t r1,t), (16)

σ̃(m)2

r1,t = ex
(m)
1,t +

(
h⊤
t−1C

(m)−1

1,t−1 ht−1

)−1

, (17)

σ̃(m)2

r2,t = ex
(m)
2,t +

(
h⊤
t−1C

(m)−1

2,t−1 ht−1

)−1

(18)

σ̃2(m)
r3,t = ex

(m)
3,t , (19)

where

ht−1 = [1, 1, · · · , 1]⊤ (20)

ρ1,t−1 = [r1,1, r1,2, · · · , r1,t−1]
⊤ (21)

ρ
(m)
2,t−1 = [r2,1 − x

(m)
4,1 r1,1, · · · , r2,t−1 − x

(m)
4,t−1r1,t−1]

⊤

(22)

C
(m)
1,t−1 = diag{ex

(m)
1,1 , ex

(m)
1,2 , · · · , ex

(m)
1,t−1} (23)

C
(m)
2,t−1 = diag{ex

(m)
2,1 , ex

(m)
2,1 , · · · , ex

(m)
2,t−1}. (24)

An important feature of the proposed methodology is its ability
to generate particles from the predictive distributions of the hidden
states, as well as the returns. Consider for example the need to obtain
samples of rt+1. In theory, we have to be able to draw from

p(rt+1|r1,:t) =

∫
p(rt+1|xt+1, r1,:t)p(x0:t+1|r1,:t)dx0:t+1,

(25)

which first requires that we solve (25) and second, that we are able
to generate rt+1 from that distribution. Due to the complexity
of the integral, this is not feasible, and therefore we resort to an
approximation. At time instant t + 1 we propagate the particles
and have the streams x

(m)
0:t+1. We draw randomly the stream from

the multinomial distribution with uniform probabilities, and say, we
obtain x

(lm)
0:t+1. Then using the particle x(lm)

t+1 and the estimates µ̃(lm)
1

and µ̃
(lm)
2 , we readily generate first r(m)

1,t+1, then r
(m)
2,t+1, and finally,

r
(m)
3,t+1.

In the next section, we demonstrate the performance of the
method with Monte Carlo simulations.

4. SIMULATION RESULTS

In order to evaluate the introduced vector stochastic-volatility model
and the proposed PF method, we ran several simulations to produce
time-series that mimic real data. In simulating the method, we
generated the states and the observations using the following
parameters of the model:

Θ =



0.7 −0.4 0.5 −0.3 0 0 0 0
1.2 −0.3 0.3 0.1 0 0 0 0
−0.4 0.2 0.4 −0.1 0 0 0 0
0.6 0 0 0 0.7 0 0 0
0.5 0 0 0 0 0.6 0 0
0.7 0 0 0 0 0 0.5 0
0.4 0 0 0 0 0 0 0.5


, (26)

with the noise parameters ρ1 = 0, ρ2 = 0, ρ3 = 0, and σi = 0.1,
i = 1, 2 · · · , 7. Finally, the expected stock and bond market returns
were set to µ1 = 0.03 and µ2 = 0.02.

In Fig. 1, we observe one set of simulated stock market, bond
market and hedge fund returns from the model. They showed
variabilities that mimic well real returns.

In Figs. 2 - 4, we display the mean-square errors (MSEs) of the
estimated states x1,t, x2,t, and x3,t obtained by two particle filters.
One of them knew the exact values of all the static parameters of
the model and the other had no such knowledge. The purpose of
running the first filter was to have a benchmark for the performance
ofthe second filter.

The MSEs were obtained from 50 independent realizations, and
in each PF implementation, we used M = 1000 particles. As
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Fig. 1: Simulated return time-series.

expected, the performance of the particle filter that knew all the static
parameters performed better, but that of the proposed filter was not
far behind. We would like to point out that in initializing the filters,
we used particles of the states that were randomly distributed near
their true values. Even with this type of initialization, the filters
needed about 20 samples to lock on good estimates of the state. The
problem of initialization deserves a separate consideration and will
be part of our future work.

We should note that in many examples, and certainly in our case,
the data are available at different frequencies. For example, stock
and bond market returns are available daily, although not necessarily
synchronously, while the hedge fund returns are only available
monthly. The particle filter is ideally suited to such asynchronous
data and therefore, this, too, will be part of our future work.
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Fig. 2: MSE of x1,t with PF when all the static parameters are known
and unknown, respectively.

It is important to emphasize that the proposed method can also
provide estimates of the static parameters, even though they were
integrated out. Due to lack of space, we do not present results related
to the predictive distributions of the returns. They show that the
method was also capable to provide accurate predictions.
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Fig. 3: MSE of x2,t with PF when all the static parameters are known
and unknown, respectively.
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Fig. 4: MSE of x3,t with PF when all the static parameters are known
and unknown, respectively.

5. CONCLUSIONS

In this paper, we implemented a Rao-Blackwellized particle filter-
ing method with a vector stochastic volatility model. The intent is
that our model captures not only the stochastic volatility in financial
markets but also the correlation and beta between asset classes. All
this has been demonstrated both from a theoretical and a practical
perspective, as shown by the results provided in the previous section.

We showed how we can obtain the predictive distributions of
the various hidden processes as well as the returns under rather
general conditions. We were able to avoid generating particles of
all the static parameters of the model, which allows for enhanced
performance of the proposed approach. When applied to analyzing
hedge fund returns, we showed how they can be decomposed into
idiosyncratic returns and returns related to market factors.

There are many applications, including performance attribution,
risk management, portfolio optimization, and replication strategies,
that can benefit from this method. In particular, a large percentage
of hedge fund returns can be easily replicated using available market
instruments, and portfolios of hedge fund strategies can be optimized
to constrain, or even eliminate, market risk in order to capture pure
alpha related to non-correlated performance. In that way, hedge
funds with large market exposures can be avoided and those with
large idiosyncratic returns, relative to risk, emphasized.
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