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ABSTRACT

Traffic analysis often requires direct observations of network
connections at local vantage points. In this work, we show
that traffic analysis can be performed remotely by taking ad-
vantage of a timing side channel. The timing side channel re-
sults from a shared resource, namely, the scheduler between
two users. Utilizing Shannon equivocation as a privacy met-
ric, we prove that one user can learn the complete traffic pat-
tern of the other user if the scheduler employs a first come first
serve (FCFS) policy. Moreover, we show the feasibility of a
real system attack exploiting the timing side channel inside a
home digital subscriber line (DSL) router. This demonstrates
the magnitude of the threat timing side channels pose for traf-
fic analysis.

Index Terms— timing channel, timing side channel, traf-
fic analysis, privacy

1. INTRODUCTION

1.1. Traffic Analysis

Traffic analysis is a crucial tool for inferring user behaviors in
networks, since communications by and large are encrypted.
Despite ‘invisible’ packet contents, an encrypted network
connection often leaves noticeable ‘footprints’, such as packet
timestamps and payload sizes. These communication patterns
preserve to some extent properties of the upper-layer activi-
ties, and hence can be used to perform traffic analysis. For
instance, one can classify application protocols of encrypted
packet flows based on sizes, timings, and directions [1].
Moreover, statistical analysis of packet payloads can help
detect abnormal activities such as network intrusions [2].
Traffic analysis may also be applied for malicious purposes,
such as compromising user passwords [3], recovering spoken
phrases in voice over IP (VoIP) conversations [4] and even
identifying webpages a user is browsing [5].
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Fig. 1. A traffic analysis scenario. To gain information about
the user’s activity, the traffic analyzer monitors packet traces
by having access to a router (vantage point) near the user.

Previous instances of traffic analysis often require direct
observations of a network flow, which significantly restricts
the practical application. For example in Figure 1, one has
to stay close to a target user in order to capture useful packet
traces for analysis. If such a local vantage point is not avail-
able, traffic analysis gets much harder. In this work, we show
that even in such scenarios, it is still possible to learn traffic
patterns by exploiting a timing side channel.

1.2. Timing Side Channels

Timing side channels exist in systems with common resources
scheduled among multiple parties. For instance, in a single
server queuing system, one user may infer the workloads of
other users by noticing patterns of the server’s busy periods.
Although a timing side channel does not provide information
as accurate as directly capturing traces, practical traffic anal-
ysis is still applicable. In [6], a timing side channel is discov-
ered in cloud servers where jobs of several clients are assigned
onto the same physical host. In that case, a cloud client would
know the sizes of jobs issued by other clients if carefully mea-
suring the time when the system hardwares are taken. Similar
ideas apply to routers, where myriad packet flows meet and
wait to be scheduled. By probing a router’s buffer, one can
estimate throughputs of connections belonging to others [7],
which is shown to be useful for compromising an anonymity
network [8].

In this paper, we study timing side channels for traffic
analysis from both theoretical and practical viewpoints. This
work differs from our previous work in [9], where the at-
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tacker’s probes are Bernoulli, i.e., the attacker samples the
shared queue at random times according to a Bernoulli pro-
cess. Given the same sampling rate, it can be proven that
uniform sampling is optimal in terms of preserving the most
information about the original arrival process. Therefore, the
model in this paper considers a stronger attacker.

The rest of the paper is organized as follows. In §2, we
introduce our timing side channel model arising from a FCFS
scheduler. We characterize the information theoretical limit
of this timing side channel in §3. A practical application of
aforementioned timing side channel is presented in §4. We
conclude in §5.

2. SYSTEM MODEL

We consider a router scheduling packets from two users, as
depicted in Figure 2(a). In every time slot, each user either
issues one packet or stays idle. All packets are buffered in a
single FCFS queue before they are served. The router serves
one packet in each time slot.

Assume one of the users is a malicious attacker who wants
to learn the other user’s traffic patterns. Since the service to-
kens are allocated in FCFS order, the attacker’s departure pro-
cess conveys information about the queue status, and hence
the other user’s arrival pattern. We use the following notation
in the rest of the paper.

• We assume the user’s packets are generated from a
Bernoulli process of rate λ. Clearly, the difficulty of
the attacker inferring the arrival pattern depends on the
user’s arrival model. It is easy to guess the arrival tim-
ings of the user if packets are issued in a predictable or
regular manner; e.g., ON/OFF with a fixed period. On
the contrary, as the Bernoulli process has the maximum
entropy rate [10], hence our model sets a fairy difficult
task for the attacker;

• ω is the arrival rate of the attacker. Considering that the
router’s service rate is 1 packet per time slot, we require
ω ∈ [0, 1− λ) for the stability of the queue;

• ti is the time slot when the attacker sends the ith packet,
and t′i is its departure time;

• xi denotes the number of arrivals from the other user
between consecutive packets of the attacker (see Fig-
ure 2(b)). The attacker’s goal is to learn the arrival pat-
tern {xi} for all i.

2.1. Attack Strategy

We consider a periodic-sampling attacker where the attacker
issues packets at evenly-spaced time slots to sample the user’s
arrival process (see Figure 2(b)), i.e., ti+1 − ti = 1

ω .1 Given
the user’s arrival process is Bernoulli, xi ∼ Bernoulli( 1

ω , λ).

1More precisely, ti+1 − ti = b 1ω c or d 1
ω
e. For the convenience of anal-

ysis, we assume 1
ω

is an integer. The methodology and result of our analysis
still are true without this assumption.
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Fig. 2. A router scheduling packets for a user and an attacker.
The attacker creates a timing side channel by issuing packets
periodically to sample the queue length at the router buffer.

3. ANALYSIS OF INFORMATION LEAKAGE

In this section, we study how much information regarding the
user’s arrival pattern the attacker can learn using the timing
side channel. We measure the information leakage of this tim-
ing side channel with a Shannon equivocation metric [11], as
defined below.

Definition 1. The equivocation rate, i.e., the conditioned ran-
domness in user’s arrival pattern given the observations of
the attacker is given by

P = lim
n→∞

H (x1, · · · , xn|t0, · · · , tn, t′0, · · · , t′n)
n

, (1)

where H denotes the entropy function.

Metric P characterizes the remaining uncertainty of the
target traffic pattern given the attacker’s observations of the
queue. A smaller value of P implies that the attack is more
successful in learning the pattern; or equivalently the side
channel is more suited for traffic analysis.

Note that the attacker can calculate the queue length at
the buffer from his packet timings. Define qi to be the queue
length at the beginning of time ti (before the ith attack job
arrives), then the attacker knows

qi = t′i − ti − 1. (2)

Lemma 3.1. When the total arrival rate satisfies λ+ ω < 1,
the user’s privacy is given by

P = H(X|Q1, Q2), (3)

where Q2 =
(
Q1 +X + 1− 1

ω

)
+

, X ∼ Bernoulli( 1
ω
, λ), and

Q1, Q2 have identical marginal distributions.2

2The function (a)+ = max{a, 0}.
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Proof. Applying the entropy chain rule,

H
(
x1, · · · , xn|t0, · · · , tn, t′0, · · · , t′n

)
=

n∑
i=1

H
(
xi|x1, · · · , xi−1, t0, · · · , tn, t′0, · · · , t′n

)
.

(4)

Notice that the queue length seen by the attacker updates
according to

qi =

(
qi−1 + 1 + xi −

1

ω

)
+

, i = 1, 2, · · · , n (5)

which indicates that the pair (qi, qi+1) is a sufficient statistic
of the pair (ti, t′i)′s in estimating xi. Moreover, from (2) it is
easy to check that (ti, t′i)′s is a sufficient statistic of (qi, qi+1)
as well. Therefore, each term of the summation in (4) can be
rewritten as

H
(
xi|x1 · · ·xi−1, t0 · · · tn, t′0 · · · t′n

)
= H (xi|qi, qi+1) . (6)

Notice that {(qi, qi+1) , i = 0, 1, · · · } forms a Markov chain.
Define a Lyapunov function as V (qi, qi+1) = qi+1, it can
be shown that this chain is stable if λ + ω < 1. This
implies that the limit of H (xi|qi, qi+1) for i → ∞ exists.
Denote the stationary states of (xi, qi, qi+1) by random vari-
ables (X,Q1, Q2). Thus, limit of (6) can be represented by
H(X|Q1, Q2). Substituting this limit into (4) and (1), con-
cludes the proof. Note that X has the same distribution as xi,
Bernoulli( 1

ω
, λ), and Q2 =

(
Q1 +X + 1− 1

ω

)
+
.

Theorem 3.2. When the attacker issues packets at the max-
imum available rate, ω → 1 − λ, user’s traffic pattern is
entirely leaked through the side channel, i.e.,

lim
ω→1−λ

P = 0. (7)

Proof. Because Q2 =
(
Q1 +X + 1− 1

ω

)
+

, when Q2 > 0, X
is fixed by Q2 +

1
ω
− 1−Q1. Hence, we have H(X|Q1, Q2 >

0) = 0, and can rewrite (3) as

P = P (Q2 = 0)H(X|Q1, Q2 = 0). (8)

Derive the z-transform of Q2 (or Q1) as

E
[
zQ2

]
=

∑ 1
ω
−2

i=0 P (Q2 = i)
∑ 1

ω
−2−i

j=0 P (X = j)(z
1
ω
−1 − zi+j)

z
1
ω
−1 − (1− λ+ λz)

1
ω

(9)
and take z → 1 on both sides. We get
1
ω
−2∑

i=0

P (Q2 = i)

1
ω
−2−i∑
j=0

P (X = j)(
1

ω
− 1− i− j) = 1

ω
(1− ω − λ).

(10)
In (10), when ω → 1− λ, P (Q2 = i) = 0, ∀ i ≤ 1

ω
. Applying

this result to (8), proves (7).

4. EXPERIMENTS

We already showed that an FCFS scheduler creates a timing
side channel that allows one user to learn the complete traf-
fic pattern of another. Now we provide an evidence of such
channels in real-world systems.

4.1. A Timing Side Channel in DSL

We examine a typical home digital subscriber line (DSL) en-
vironment. In Figure 3, Alice subscribes to a DSL Inter-
net service. Although she applies encryptions to protect the
packet contents, her traffic patterns are still vulnerable to traf-
fic analysis because of existence of a timing side channel
that we describe in the following. All packets destined for
Alice have to pass through a queue inside her Internet Ser-
vice Provider (ISP) before they are scheduled to Alice’s com-
puter. If an attacker can join this queue, he gets the chance
to learn Alice’s traffic patterns by analyzing the queuing de-
lays he experiences. Therefore, as long as Bob knows Alice’s
IP address, he can issue Internet control message protocol
(ICMP) requests to ping Alice, and observes the round trip
times (RTT).3

Besides Alice’s traffic, delays on intermediate routers on
Bob’s path to Alice’s DSL router affect his RTTs. Therefore,
RTT of the ith ping packet, denoted by τi, can be expressed
as

τi =
∑

l∈links on the path

(
pli + tli + wl

i

)
, (11)

where pli is the propagation delay, tli is the transmission de-
lay, and wli is the queueing delay experienced by the ith ping
packet on link l. Notice that pli and tli are determined by the
length and bandwidth of the underlying physical link, so they
do not change during the short period of the attack. We sub-
stitute this portion of the delay with the smallest RTT seen
in the entire ping sequence to get an approximation to τi ≈
minj τj +

∑
l∈links w

l
i. Moreover, since Alice’s DSL link

has a bandwidth of only several Mbps, much lower than the
rest of the links on the path (most are at backbone nodes),
the queuing delay for the most part results at Alice’s DSL
router. Ignoring congestions on other links, we get τi ≈
minj τj+(t′i − ti). Recall that ti and t′i denote the arrival and
departure time of Bob’s ith ping packet, respectively. Thus,
the RTTs seen by Bob capture the queueing effect of Alice’s
traffic pattern.

4.2. Measurements

We verified the above analysis by setting up an experiment.
During the experiment, the host initiated HTTP connections
from a DSL line with download bandwidth of 3 Mbps. At
the same time, we scheduled ping requests to this host from
a remote server. The pings were sent every 10 ms (i.e., ti −
ti−1 = 10ms).

Figure 4(a) shows the volume of HTTP packets down-
loaded within every interval of 10 ms. Figure 4(b) depicts the
observed RTTs in response to Bob’s pings. A quick inspec-
tion of these figures reveals a strong correlation between the

3We use ping packets as they have low bandwidths and thus hard to no-
tice. Other protocols (e.g., TCP) can be considered when Alice’s DSL router
disables the ping functionality.

8699



Alice's ISP
DSL Router

DSL Buffer

Alice

Bob

Web Server

Fig. 3. A timing side channel in home DSLs. Alice is surfing
the Internet through a DSL line, while Bob issues ping packets
to sample the queue length at Alice’s DSL buffer. This creates
a timing side channel, allowing Bob to learn Alice’s arrival
pattern.

download traffic pattern of Alice and Bob’s RTTs. Finally, ap-
plying the processing described in §4.1 to the received RTTs,
we obtain the sequence in Figure 4(c), which resembles the
traffic pattern in Figure 4(a) even more closely.

The fact that the estimated RTTs in Figure 4(c) reveal fea-
tures of the original traffic pattern, enables the attacker to per-
form traffic analysis by exploiting the aforementioned timing
side channel. It is noteworthy, that what sets this attack from
previous traffic analysis threats apart is that it does not require
access to a local vantage point. In fact, in [12], we showed an
attacker was able to remotely fingerprint the webpage visited
by Alice using a home DSL. The interested reader is referred
to [12] for more details.

5. CONCLUSION

We studied the information leakage of the timing side channel
that arises from an FCFS scheduler servicing two users. Such
a timing channel enables one user to learn the traffic pattern
of the other through the queueing delay he experiences. We
prove that there exists an attack strategy, i.e, a sequence of
jobs that the attacker issues, which leads to learning the other
user’s traffic pattern without ambiguity. In other words, the
equivocation rate, i.e., the conditional randomness in the ar-
rival process of the user given the observations of the attacker
goes to zero. Moreover, we give evidence of the existence
of such a channel in home DSL routers that demonstrates the
threat timing side channel pose as they enable remote traffic
analysis from non-local vantage points.
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