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ABSTRACT

Sound event detection is addressed in the presence of overlapping
sounds. Unsupervised sound source separation into streams is used
as a preprocessing step to minimize the interference of overlapping
events. This poses a problem in supervised model training, since
there is no knowledge about which separated stream contains the
targeted sound source. We propose two iterative approaches based
on EM algorithm to select the most likely stream to contain the tar-
get sound: one by selecting always the most likely stream and an-
other one by gradually eliminating the most unlikely streams from
the training. The approaches were evaluated with a database con-
taining recordings from various contexts, against the baseline sys-
tem trained without applying stream selection. Both proposed ap-
proaches were found to give a reasonable increase of 8 percentage
units in the detection accuracy.

Index Terms— acoustic event detection, sound source separa-
tion, supervised model training, acoustic pattern recognition

1. INTRODUCTION

A sound event is a segment of audio which can be characterized and
identified by a textual label. Sound events can be used to describe
and understand the human and social activities. Automatic sound
event detection aims at processing a continuous acoustic signal and
converting it into a sequence of event labels with associated start
times and end times. The sound event detection can be utilized in
a variety of application areas, including context-based indexing and
retrieval in multimedia databases [1, 2], unobtrusive monitoring in
health care [3], and audio-based surveillance [4]. Furthermore, the
detected events can be used as mid-level-representation in other re-
search areas, e.g. audio context recognition [5, 6], automatic tagging
[7], and audio segmentation [8].

Early research on sound event detection concentrated on detect-
ing only one sound event at a time, considerably simplifying the
detection problem [9, 10, 11]. Everyday auditory scenes are usu-
ally complex in sound events, having multiple overlapping sound
events active at the same time. If an algorithm that detects only
a single event at a time is applied to material consisting of over-
lapping events, the majority of detection errors will be caused by
temporally overlapping sound events. In order to detect all sound
events, a way to deal with overlapping events is needed. Recently,
the problem of overlapping events has been addressed at various
levels of the detection process. At the signal level, unsupervised
sound source separation can be used to minimize the acoustical in-
terference of overlapping sound sources [12]. In the acoustic model
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training, the overlapping events can be taken into account by mod-
eling all possible event combinations as new intermediate classes
[13, 14]. In the event detection stage, overlapping events can be
detected with multiple iterative detection passes and by excluding
already detected events from the following detection iterations until
the desired amount of overlapping events have been reached [15].
In addition to these approaches, multiple audio signals and sound
source localization methods along with video based methods can be
used to better handle overlapping event in the detection [16].

In this paper, we tackle the problem of overlapping events by
applying unsupervised sound source separation as a preprocessing
stage for the event detection. In the source separation stage, the
mixture signal is split into streams containing roughly homoge-
neous spectral content, each differing significantly from the other
streams. Following the concept of noise adaptive training used
in robust speech recognition [17], the same signal enhancement
method should be applied both before model training and detection
stages. Due to the unsupervised nature of the separation, there is
no knowledge about which sound source is separated into which
stream, making it challenging to take full advantage of the separated
audio as such in the supervised model training.

We propose a method to train reliable acoustic event models by
iteratively selecting the most appropriate training material from au-
dio separated in an unsupervised manner. Prior knowledge about the
temporal location of events given by annotations is used to get initial
models for event classes. Two alternative approaches using expec-
tation maximization (EM) algorithm to select the stream that con-
tains the target sound are proposed: one selecting always the most
likely stream and another gradually eliminating the most unlikely
streams from the training. The proposed method is evaluated with
a database recorded in realistic environments with a high degree of
overlapping sound events. The method is compared to the baseline
system trained without the stream selection. At the general level,
this work extends our context-dependent sound event detection sys-
tem presented in [12] with event priors and proposed model training
approach.

The rest of this paper is organized as follows. Section 2 presents
the sound event detection system for overlapping events, and Sec-
tion 3 explains the model training using recordings with overlapping
events. Section 4 presents the experimental results, and Section 5
discusses them. Section 6 provides conclusions and future work.

2. SOUND EVENT DETECTION

The overview of the sound event detection system is presented in
Figure 1. Sound source separation is applied on the mixture signal
to produce the streams (S1, S2, S3, S4). In this study, the num-
ber of streams is fixed to four. Feature extraction and sound event
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Fig. 1. Overview of sound event detection system.

detection are performed on each of these streams separately and the
resulting event sequences are combined into a multi-source symbolic
representation of the original signal.

In the event detection stage, a given context is used to select
a context-specific set of events with context-specific acoustic event
models and prior probabilities. This provides more accurate model-
ing, since many sound events are acoustically dissimilar across con-
texts [15]. Furthermore, some sound events are more likely than
others, and the differences in occurrence rates are even more obvi-
ous between contexts.

2.1. Source separation

In the source separation stage, a given input audio signal that consists
of multiple overlapping sounds (mixture signal) is decomposed into
its sound sources (ideally). The proposed system utilizes an unsuper-
vised sound source separation method based on non-negative matrix
factorization (NMF) of the magnitude spectrogram of the mixture
signal [18]. The method models the mixture signal as a sum of com-
ponents, each having a fixed magnitude spectrum and a time-varying
gain. Due to the unsupervised nature of the method, the outcome
of the factorization cannot be strictly controlled. Sound sources in
the mixture signal may get represented as the sum of one or more
components, and at the same time each component can contain parts
from one or more sound sources. However, typically the factoriza-
tion achieves good separation of sound sources. A more detailed
description of the separation algorithm is presented in [12].

Most of the sound events have diverse characteristics and they
cannot be accurately modeled with fixed spectrums and time-varying
gains. However, the function of the algorithm is better explained
by reconstructing the streams with Wiener filtering: a time-varying
Wiener filter of each component separates a stream which contains
roughly homogeneous spectral content that differs significantly from
the other streams. The resulting streams represent a combination of
the physical sources present in the mixture signal, rather than ex-
act physical sound sources. In this paper, the original multisource
spectrum is split into four streams (number of components) limiting
the the event detection to finding a maximum of four simultaneous
sound events. This is in agreement with the average amount of over-
lapping events in our evaluation database.

2.2. Event models

The coarse shape of the power spectrum of the input signal is rep-
resented with 16 mel-frequency cepstral coefficients (MFCCs). In

Fig. 2. Fully-connected sound event model network.

order to describe the dynamic properties of the cepstrum, first and
second time derivatives of the static coefficients are also utilized.
Features are calculated in 20 ms frames with 50 % overlap.

Continuous-density hidden Markov models (HMMs) with
three state left-to-right topology are used to model sound-event-
conditional feature distributions. The probability density functions
of observations in each state are modeled with a mixture of mul-
tivariate Gaussian density functions (16 Gaussians). The model
training process is described in detail in Section 3. In the testing
stage, the trained sound event models are connected into a network
with transitions from each model to any other. A model network is
shown in Figure 2.

Manually annotated training recordings are used to estimate the
event priors, i.e., transition probabilities in the network. Annotated
events are regarded as a separate entities, and their event-lengths are
accumulated (in precision of seconds). Normalized lengths of each
event class are used as event priors.

2.3. Detection

Sound event detection is applied separately for each stream. This is
obtained by applying Viterbi decoding inside the network of sound
event models. The alignment of states and observations given by the
Viterbi algorithm produces estimates of event segment boundaries
and event labels. Detection results from each stream are merged into
a single set of events as in [12].

When calculating the path cost through the model network, the
balance between likelihoods provided by the event priors and the
acoustic models is adjusted using a weight parameter. The number
of events in the resulting event sequence is controlled by using a cost
for inter-event transitions. Both these parameters are experimentally
chosen using a development set, and are tuned so that the output
has approximately equal amount of events as the manually annotated
ground truth. A more detailed description of the detection stage is
presented in [15].

3. MODEL TRAINING

In the the source separation stage, each original recording is split
into four audio streams. The training material for an event class is
selected based on annotated time-segments. Since the source separa-
tion is done in an unsupervised manner, there is no exact knowledge
about which stream contains most suitable training material for the
target sound event class. The problem is to select which of the four
streams contains the target event class. In this work, we assume that
there is always one single stream containing the target sound, and
other three streams are regarded to contain overlapping events. The
stream selection for training is illustrated in Figure 3.

Regardless of the stream selection, the overlapping events might
still cause some interference and variability to the training material.
However, this is assumed to be averaged out in the model training
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Fig. 3. Separated audio streams and material selection for model
training. Annotated events A and B are separated into distinct
streams 3 and 2.

due to the large training set, and the models will learn a reliable
representation of the target sound events.

3.1. Expectation maximization algorithm

The iterative stream selection is based on expectation-maximization
(EM) algorithm [19]. In order to simplify the notation, we present
training of a single event class model λ. The described procedure is
identical for each of the classes. An audio segment extracted from
an annotated time-segment s in a stream with index m is denoted
as xs,m. Let us denote a set of events that are annotated to content
target class by set C.

The EM algorithm is used to iteratively associate subset of the
xs,m for training acoustic model λ for a sound class. Acoustic model
λ is initialized by training a model using all annotated time-segments
S from all four separated streams, xC,1:4. Notation xC,1:4 denotes all
the x indexed by event set s ∈ C and m ∈ [1, 4]. After this the EM
algorithm operates iteratively repeating the E step and M step while
the value of the likelihood function P (λ | xC,1:4) is maximized at
each iteration. Using Bayesian expansion, expression to be maxi-
mized is P (xC,1:4 | λ), which is defined as

P (xC,1:4 | λ) ≡
∑

s∈C

∑

m

P (xs,m, as = m | λ) , (1)

where latent variable as denotes the index of the stream that contains
the target event. This can be further expanded into

P (xC,1:4 | λ) =
∑

s∈C

∑

m

P (xs,m | λ)P (as = m | xs,m, λ) .

(2)
Above, P (xs,m | λ) is the likelihood of xs,m for the HMM event
model. Let us denote the posterior probability P (as = m | xs,m, λ)
by as,m. The EM algorithm iterates over expectation – calculating
as,m and maximization – recalculating model λ:

(E): as,m = P (as = m | xs,m, λ) (3)

(M): λ ← argmax
λ

∑

s∈C

∑

m

P (xs,m | λ) as,m. (4)

The expectation step represents the stream selection, and is
given as

as,m =
P (xs,m | λ)∑
m′ P (xs,m′ | λ)

. (5)

The maximization step in Eq. 4 represents the training of the
new models and is solved by conventional Baum-Welch algorithm
used to train HMMs.

Prominent stream selection

0 1 2 3

Stream elimination

0 1 2 34

iterations iterations

n=0 n=1 n=2 n=3

Fig. 4. Example of proposed stream selection approaches. Promi-
nent stream selection: in each iteration only one as,m is set to one,
rest are zero. Stream elimination: in each iteration one more as,m is
set to zero.

In order to simplify the maximization step, a is made binary as
described in the next section. As a result of this, only those xs,m

for which as,m = 1 are used in the maximization. This avoids us-
ing weighted observations so that standard HMM training algorithms
can be used.

3.2. Stream selection

We propose two approaches to make a binary. In the first one, only
the most likely stream is selected, i.e., as,m having the highest like-
lihood among as,1:4 is set to one and as,m′ for other m is set to zero.
This approach is later denoted as prominent stream selection.

In the second one, the n smallest as,m among as,1:4 are set to
zero, i.e. eliminated. We set n equal to the iteration count. This ap-
proach is later denoted as stream elimination. The illustration of how
the stream selection approaches are applied to one training instance
is shown in Figure 4.

Prominent stream selection is repeated until convergence, i.e.
the stream indexes do not change. The stream elimination is repeated
until only one stream is left.

4. SYSTEM EVALUATION

The sound event detection system is trained and tested using an audio
database collected from real-life contexts. The training and testing
are done in a context-dependent manner, using context-dependent
count-based priors and acoustical models.

4.1. Database

The database consists of 103 recordings ranging from 10 to 30 min-
utes resulting in total 1133 minutes of audio. The recordings were
collected from ten audio contexts: basketball game, beach, inside a
bus, inside a car, hallways, inside an office facility, restaurant, gro-
cery shop, street, and stadium with track and field events. There
were 8-14 recordings made in each context using binaural micro-
phones placed inside the ears of the person recording. In this study
we are using monophonic versions of the recordings, i.e., the two
channels are averaged to one channel.

All clearly audible sound events in the recordings were man-
ually annotated by indicating the start and end times of the sound
events. Total of 61 distinct event classes are used in the study. The
event classes include e.g. speech, laughter, applause, car door, road,
dishes, door, chair, music, and footsteps. The number of events that
can be active at the same time was not limited. In this sense, the
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A1 pre / rec A30 pre / rec
Baseline 36.7±2.4 33.1 / 41.2 57.2±2.2 53.8 / 61.2
Prominent stream selection
Iteration 1 42.8±5.2 38.9 / 47.6 60.6±3.6 58.1 / 63.4
Iteration 2 43.8±4.4 39.4 / 49.3 60.6±2.3 57.7 / 63.9
Iteration 3 44.5±5.9 40.0 / 50.2 60.9±2.9 58.1 / 64.1
Iteration 4 44.1±5.8 39.7 / 49.8 60.5±2.3 57.8 / 63.6
Stream elimination
Iteration 1, n=1 37.9±2.3 34.3 / 42.4 58.4±0.7 55.2 / 62.0
Iteration 2, n=2 40.4±4.0 36.3 / 45.6 60.2±1.7 57.0 / 63.9
Iteration 3, n=3 44.9±4.7 40.2 / 51.1 60.8±2.8 58.0 / 64.0

Table 1. Sound event detection accuracy, calculated based on pre-
cision (pre) and recall (rec), for the baseline and systems using pro-
posed stream selection approaches.

recordings can be regarded as polyphonic. Usually in a natural au-
ditory scene the event classes are not equally represented. While
many event classes are very common and shared between multiple
contexts (e.g. speech), some event classes can be quite rare or they
are highly context-specific (e.g. referee whistle in basketball game
or pressure release noise inside the bus). A more detailed description
of the database and event class statistics can be found in [11].

4.2. Performance evaluation

For evaluating the system output, we will use the block-wise detec-
tion accuracy metric proposed in [12]. This metric evaluates how
well the events detected in non-overlapping time blocks coincide
with the annotations. The detected events are regarded only at the
block level, and in this study we are using two block lengths: one
second (denoted by A1) and 30 seconds (denoted by A30).

Inside a block, precision and recall are calculated, and block-
wise detection accuracy is represented by the F-score. An event is
regarded as correctly detected if it has been detected and annotated
somewhere within the considered block.

4.3. Results

The detection accuracy of the models produced by the proposed
stream selection approaches was evaluated and compared against a
baseline system which is using event models trained without stream
selection. The event models used in the baseline are also used as
initial models for the stream selection process.

The evaluation database was split randomly into five equal-sized
sets, with one set being used as test data and other four for train-
ing the system. The split was done five times for a five-fold cross-
validation setup. One fold was used in the development stage for
determining parameters for the event sequence decoding. The eval-
uation results are presented as the average of the other four folds.

The event detection results for the baseline system and the pro-
posed stream selection approaches are presented in Table 1 (best per-
formance highlighted). The results show average detection accuracy
along with 95 % confidence interval. The number of iteration steps
for the prominent stream selection approach was four, since only
minimal changes (0.1 % change) were noticed after the fourth itera-
tion. In the stream elimination approach, the elimination parameter
n was increased with one in each iteration. After three iterations only
the most likely stream was left and the iteration was ended.

Detection accuracy increases steadily with both of the selection
approaches throughout the iterations. In the end, both approaches

basketball beach bus car hallway office restaurant shop street track&field

10%

20%

30%

40%

50%

60%

A
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baseline

prominent stream selection

stream elimination

Fig. 5. Context-wise detection accuracy (A1) after three stream se-
lection iterations, along with the baseline accuracy.

provide similar level of increase in the block-wise accuracy com-
pared to the baseline system. In the one second block-level, the
improvement in detection accuracy is over 8 percentage units for
both selection approaches after three iterations. In the 30 second
block-level, the improvement is more modest being only 3 percent-
age units. The increased accuracy of the detection is especially no-
ticeable in the recall of the detection for both block-levels, i.e. bigger
portion of annotated events are correctly detected.

The context-wise results are shown in Figure 5. For restaurant
and office, the proposed stream selection approach will give signifi-
cant improvement, whereas for recording made inside a car, the de-
tection accuracy even drops a bit. This may be due to the fact that
car environment is very noisy and the degree of overlapping between
events is low.

5. DISCUSSIONS

The main difficulty when using the prominent stream selection ap-
proach is to know how many iterations are needed. In this study we
stopped the number of iterations at four, but in fact the maximum
detection accuracy was obtained after three iterations. Results in Ta-
ble 1 show that accuracy does not change significantly after the first
iteration. This means that the first iteration already selects most of
the correct streams for each target class.

The stream elimination approach is more straightforward, as one
needs to perform iterations until only one stream is left. In this ap-
proach, the detection accuracy increases gradually, reaching maxi-
mum at the end of the process.

Compared to previous work using sound source separation [12],
the presented work increases significantly (52.6 % to 60.9 % in A30)
the performance through using event priors and the proposed stream
selection method in training the models. Compared to detection on
polyphonic audio, that does not use any source separation, the per-
formance is more than doubled [15].

6. CONCLUSIONS

A method for training acoustic event models from acoustic mate-
rial containing high degree of overlapping events was proposed. In
the preprocessing stage, the unsupervised sound source separation
was applied to the audio signal in order to minimize the interference
of overlapping events. The most appropriate training material for
the target sound class was selected iteratively from the separated au-
dio streams using an EM algorithm. The approaches for selecting
streams work by selecting the most likely or eliminating the most
unlikely streams. Both approaches were found to give reasonable
increase in the detection accuracy compared to the baseline system.
This highlights the benefits of carefully selecting training material.
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