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ABSTRACT 
 
Time overlapping of acoustic signals, which so often occurs in real 
life, is a challenge for current state-of-the-art sound recognition 
systems. In this work, we propose an approach for detecting, 
identifying and positioning a set of simultaneous acoustic events in 
a room environment, using multiple arbitrarily-located microphone 
arrays, and working in real time. Assuming a set of estimated 
acoustic source positions, the use of a frequency invariant null-
steering beamformer for each position and each array yields a set 
of signals which show different balances among the various 
acoustic sources. For each signal, a model-based likelihood 
computation is carried out to obtain a matrix of likelihood scores. 
Then a MAP criterion is used to jointly detect the event classes and 
assign each of them to a given source position. Experimental 
results with two sources, one of which is speech, and two three-
microphone linear arrays are reported, and a comparison with 
alternatives approaches is carried out.  
 

Index Terms— Sound recognition, acoustic event detection, 
overlapped events, microphone arrays, null-steering beamforming. 
 

1. INTRODUCTION 
 
The detection of the presence and the identity of the diverse 
acoustic events that occur in a room environment may help to 
automatically describe the social and human activities that take 
place in it, and also to increase the robustness of speech processing 
systems. After the CLEAR’07 international evaluations, where 
acoustic event detection (AED) was carried out with meeting-room 
seminars, it became clear that time overlapping of acoustic events 
is a major source of detection errors [1]. 

The detection of overlapping events may be dealt with 
different approaches, either at the signal level, the feature level, the 
model level, etc. In [2], a model based approach was adopted for 
detection of events in a meeting-room scenario with two sources, 
one of which is always speech, and the other one is a different 
acoustic event from a list of 11 pre-defined events. That approach 
is used in the current real-time system implemented in our smart-
room at the UPC, which includes both AED and acoustic source 
localization (ASL) [3]. 

However, the model based approach is hardly feasible in 
multi-source scenarios where either the number of events or the 
number of simultaneous sources is large, since all the possible 
combinations of events have to be modeled. In such case, the 
problem can be tackled at levels other than the model one. For 

instance, in [4], non-negative matrix factorization (NMF) is used at 
the front end for separating up to 4 simultaneous acoustic sources; 
and convolutive-NMF is used in [5] to deal with noisy acoustic 
events. Recognition of overlapped events at the feature level is 
attempted in [6-7]. In this work, we propose an alternative 
computationally efficient approach, which is based on signal 
separation by using multiple linear microphone arrays that are 
composed of a small number of microphones. 

Assuming a set of P hypothesized source positions (e.g. 
provided by the ASL system), a set of P beamformers is used to 
separate up to some extent each hypothesized source from the 
others. Using those (partially) separated signals, acoustic event 
detection is carried out using a maximum-a-posteriori (MAP) 
criterion. Moreover, each hypothesized event is assigned to a given 
source position using the same framework. The beamformers are 
based on a frequency invariant null steering approach. 

Experiments are carried out with the concrete meeting-room 
scenario mentioned above, using a database collected in the own 
smart-room. Results obtained with one array are compared with the 
ones from the model based approach, and also with those from a 
statistical blind source separation (BSS) technique based on the 
deflation method, which was already used in some initial 
experiments reported in [8]. Although the proposed technique 
shows slightly lower recognition results than the other two, it does 
not need the posterior assignment of event hypothesis to source 
positions that the other techniques require. Additionally, in the 
experiments it is observed how the use of an additional array 
further improves both the recognition accuracy and the position 
assignment accuracy. 

The system for detection and position assignment of 
simultaneous acoustic events is described in Section 2. 
Experimental work is reported in Section 3, and a conclusion is 
given in Section 4. 

 
2. RECOGNITION OF OVERLAPPED EVENTS BY 

MULTI-ARRAY SIGNAL SEPARATION  
 
We start assuming that several acoustic source positions are 
provided. They may have been estimated by a localization system 
that uses the available set of microphone arrays. In our approach, 
the arrays can be located arbitrarily. For deployment, this is an 
advantage with respect to using spatially structured array 
configurations.  

As shown in Fig. 1, in the proposed system, firstly the multi-
channel signal collected by each of the microphone arrays is driven 
to a set of null-steering beamformers (NSB). Each beamformer is  
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Fig. 1: Scheme of the whole detection system using K arrays. 
 
Feature extraction (FE) is applied at the output of each 
beamformer, to subsequently compute a likelihood score (LC), by 
using previously trained models of the acoustic event classes. At 
last, a decision module carries out the detection of the event 
identities by integrating the likelihood scores using a MAP 
criterion. Both the beamformer design and the MAP detection are 
presented in the two following subsections. 

 
2.1. Signal separation with frequency invariant null 
steering beamforming 
 
Null steering beamforming (NSB) allows us to design a sensor 
array pattern that steers the main beam towards the desired source, 
and places nulls in the direction of interferent sources [9]. Given 
the broadband characteristics of the audio signals, in order to 
determine the beamformer coefficients we use a technique called 
frequency invariant beamforming (FIB). The method, proposed in 
[10], uses a numerical approach to construct an optimal frequency 
invariant response for an arbitrary array configuration with a very 
small number of microphones, and it is capable of nulling several 
interferent sources simultaneously. As depicted in Fig. 2, the FIB 
method first decouples the spatial selectivity from the frequency 
selectivity by replacing the set of real sensors by a set of virtual 
ones, which are frequency invariant. Then, the same array 
coefficients can be used for all frequencies. An illustrative example 
is shown in  Fig. 3; note how the null beams are rather constant 
along frequency. 

Indeed, in our case we cannot expect with this approach a 
perfect separation of the different mixed signals at the output of the 
NSB, since we use a small number of microphones per array, and 
also because of echoes and room reverberation. 
 
2.2. Acoustic event detection and position assignment 
 
In our work we follow a detection approach that is based on 
classification. As the silence class is used, when the system is 
running along time and it outputs a non-silence hypothesis for a 
given steering direction in the array, it is decided that an event is 
detected at the target position in that direction. Consequently, we 
will deal in this section with a classification problem. 

A MAP criterion is used in our system. To determine the 
likelihoods, the acoustic events are modeled with Hidden Markov  
models (HMM), and the state emission probabilities are computed 
with continuous density Gaussian mixture models (GMM). 

 
 

  
Fig. 2: Frequency invariant beamforming. 

 
 

   
Fig. 3: FIB for two sources. The right-hand beamformer pattern 

shows a broader null than the left-hand one. 
 

Let’s assume we have a set of C classes, a set of P acoustic 
source positions, and a set of K microphone arrays. Each array 
steers a NSB to each of the source positions while nulling the 
others. So from array processing, we have a set of PK output 
signals, and after likelihood computations, we have a PxK-
dimensional matrix of likelihood scores. We will assume also that 
each class ci has a prior probability p(ci), and each estimated source 
position sj has an associated probability p(sj). The latter may be 
provided by the ASL system. 

Performing null steering beamforming with the k-th 
microphone array, which has at its input the multi-channel signal 
Xk (notice that, to simplify notation, we do not consider time 
indices), P output signals will be obtained, one for each NSB 
pattern. Let's denote with sj the NSB that has the position sj as 
target and the other positions as nulls. We want to determine the 
posterior probability of a given class ci for that k-th array through 
all the P NSBs (note that our NSBs only separate the signals 
partially, so a class actually produced at position sj may still be 
observed in all the NSBs that do not steer at sj). By using the 
product combination rule [11] (i.e. assuming the output signals of 
the beamformers are independent), we have 

( | ) ( | , ) ( )
1

( | , ) ( ) ( ) / ( )
1

P
p c X p c s X p si j ki k jj
P
p X c s p c p s p Xk i j i j kj

∏=
=

∏=
=

  (1)  

where ( | , )p X c sk i j  is the likelihood of class ci obtained from its 

corresponding HMM-GMM model. 
For combining the posterior probabilities from the various 

microphone arrays, we will use here again the product combination 
rule, so the optimal class co will be obtained with 

argmax ( | )
1

K
c p c Xi ko kci

∏=
=

 (2) 
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This beamforming based approach for AED allows to easily assign 
the optimal class to one of the given source positions. In fact, the 
optimal position will be chosen as the one steered by the 
beamformers whose outputs show a maximum product of 
posteriors over all arrays given the optimal class:

 

argmax ( , )
1

argmax ( , ) ( ) / ( )
1

K
s p s c Xj o ko ks j

K
p X c s p s p Xk o j j kks j

∏=
=

∏=
=

  (3) 

 
3. EXPERIMENTS WITH A TWO-SOURCE 

SCENARIO 
 
In our experimental work, we consider a meeting room scenario 
with a predefined set of 11 acoustic events plus speech [1-3]. Like 
in [3], there may exist either 0, 1 or 2 simultaneous events, and, in 
the last case, one of the events is always speech. However, the 
reported experiments correspond to the case of two overlapped 
events, since it is the most general one. 
 
3.1. Acoustic scenario and database 
 
Fig. 4 shows the UPC's smart-room, with the position of its 6 T-
shaped 4-microphone arrays on the walls. We use only the linear 
arrays of 3 microphones in our experiments. For training, 
development and testing of the system, we have used, as in [3], 
part of a publicly available multimodal database recorded in the 
same smart-room. Concretely, we use 8 recording sessions of audio 
data which contain isolated acoustic events. The approximate 
source positions of the acoustic events (AE) are shown in Fig. 4. 
Each session was recorded with all the 6 T-shaped microphone 
arrays. The overlapped signals used for development and testing of 
the systems were generated adding those AE signals recorded in 
the room with a speech signal, also recorded in the room, both 
from all the 24 microphones. To do that, for each AE instance, a 
segment with the same length was extracted from the speech signal 
starting from a random position, and added to the AE signal. The 
mean power of speech was made equivalent to the mean power of 
the overlapping AE. That addition of signals produces an 
increment of the background noise level, since it is included twice 
in the overlapped signals; however, going from isolated to 
overlapped signals the SNR reduction is slight: from 18.7dB to 
17.5dB. Although in our real meeting-room scenario the speaker 
may be placed at any point in the room, in the experimental dataset 
its position is fixed at a point at the left side (SP, in Fig. 4). All 
signals were recorded at 44,1 kHz sampling frequency, and further 
converted to 16 kHz. 
 
3.2. Acoustic event recognition 
 
As the number of sources is P=2 in our scenario, two beamformers 
are used: NSB1 and NSB2. This beamformers are specific for each 
array. In our experiments, to set the directions of arrival of the 
beamformers (for both the target source and the null source) we 
use the positions depicted in Fig. 4, so the beamformers are not 
adapted to each particular AE instance, as it would be done if the 
output of an ASL system was used. One angle corresponds to the  

 
 
Fig. 4: Smart-room layout, with the positions of microphone arrays 

(T-i), acoustic events (AE) and speaker (SP). 
 
speech source (the speaker's position is static), and the other one is 
an average of the angles from the various possible AEs positions 
(though some of them are changing along time, like for the ‘steps’ 
event). In this way, for a particular array, NSB1 steers to the AEs 
and nulls speech, and NSB2 steers to speech and nulls AEs.  

In the feature extraction block of the multi-array signal 
separation based AED system depicted in Fig. 1, a set of audio 
spectro–temporal features is computed for each signal frame. The 
frames are 30 ms long with a 20 ms shift, and a Hamming window 
is applied. We have used frequency-filtered log filter-bank energies 
(FF-LFBE) for the parametric representation of the spectral 
envelope of the audio signal [12]. For each frame, a short-length 
FIR filter with a transfer function z-z-1 is applied to the log filter-
bank energy sequence and end-points are taken into account. Here, 
we have used 16 FF-LFBEs along with their 16 first temporal 
derivatives. Therefore, the dimension of the feature vector is 32.  

The HTK toolkit is used for training and testing the HMM-
GMM system [13]. There is one left-to-right HMM with three 
emitting states for each AE and silence. 32 Gaussian components 
with diagonal covariance matrix are used per state. Initially, each 
HMM is trained with the standard Baum-Welch algorithm using 
signals that have been processed with the beamformer NSB1 of a 
particular array. Indeed, when testing, the knowledge about the 
relative position (left/right) of AEs and speech is not used. For 
each array, the likelihoods are computed by using the same set of 
AE+silence models for the two beamformer outputs. 

As our purpose is to compare the new signal separation based 
approach with other methods, in the reported experiments we 
actually perform classification instead of detection for all the 
methods, i.e. we are using the annotated time marks of the events. 
For the new technique, classification is carried out by combining 
the likelihood scores as indicated in (1). Both classes and positions 
are assigned flat prior probabilities in the reported tests. When 
using two arrays, the optimal class is obtained by integrating the 
posterior probabilities according to (2).  

The testing results are obtained with all the 8 sessions (S01-
S08) with a leave-one-out criterion, i.e. we recursively keep one 
session for testing, while all the other 7 sessions are used for 
training. For the signal separation based techniques the signals for 
training the models are taken after the separation is done; for the 
model based one, overlapped signals are used.  

Table 1 shows the recognition results obtained with the 
proposed system, averaging over all the 8 testing datasets, for two 
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different arrays (T4 and T6), and their combination using a product 
rule. It can be observed that a better result is obtained from array 
T4 than from array T6. And the system that combines the two 
arrays produces a higher accuracy.  

Like in our preliminary work in [8], comparison results are 
obtained with two other techniques, but here using a leave-one-out 
strategy to increase their reliability. First, a blind source separation 
(BSS) technique, which is based on the deflation method [14]. In 
coherence with how we train the models for our proposed 
technique, separated signals have been used for training the 
corresponding BSS-based system. Second, a model based 
technique that uses a set of 11 models (plus silence) for the 
acoustic events overlapped with speech. The BSS-based system 
also uses three microphones (T6), and the model based system uses 
signal from only one microphone from the same array.  

Results are shown in Table 2. The technique presented in this 
paper is called NSB-FIB in that table. The model based system 
shows a higher accuracy than the two source separation techniques. 
Interestingly enough, the NSB-FIB system works slightly better 
than the more computationally demanding BSS based system when 
both arrays are used. Note also that, among the three evaluated 
techniques, only the proposed NSB-FIB system is able to assign 
the hypothesized classes to the given source positions without 
requiring an extra system for that. Its position assignment 
capability is evaluated in the next sub-section. 
 
Table 1: Recognition accuracies obtained with the proposed system 

 
 T4 T6 T4+T6 

Accuracy (%) 79.18 77.84 81.83 
 

 
Table 2: Recognition accuracies of the three compared systems 

 

 Source separation based Model 
based NSB-FIB BSS 

Accuracy (%) 81.83 80.75  83.6 

 
 
3.3. Position assignment of the recognized events 
 
To have a complete description of the acoustic scene in our room, 
there is still the need of assigning each one of the two positions to 
each one of the two detected events. The position assignment is 
done at the decision block according to (3), after the optimal class 
is chosen through event detection. In our particular scenario, the 
optimal event class (1 of 11 AEs) is assigned to one of the source 
positions, and the other position is assigned to speech.  

A position assignment rate (PAR) metric is defined for a 
given AE class as the quotient between the number of correct 
decisions and the total number of occurrences of that AE class in 
the testing database [8]. The results with that metric, averaging 
over all AEs in the 8 testing datasets, are presented in the first row 
of Table 3 for two different arrays (T4 and T6) and their 
combination using the product rule. Again, the combination of 
arrays produces the best result.  

We have also carried out tests by using additional models: 1) 
for each beamformer output, we have included a second LC 
module that uses a set of models trained from signals that have 
been processed with the beamformer NSB2 (instead of NSB1); and 

2) in the decision block, instead of maximizing the product of 
likelihoods, we maximize the product of the likelihood ratios 
corresponding to each beamformer, like in [15]. As presented in 
the second row of the Table 3, this system modification produces a 
slight improvement in terms of PAR for the case of a single array, 
and a noticeable improvement for the combination of the two 
arrays as reported. We also tried that modification for the 
classification task; however, the accuracy changed only very 
slightly. 

 
Table 3: Position assignment results 

 
 T4 T6 T4+T6 

PAR 
(%) 

NSB1 trained models 89.5 89.1 90.3 
NSB1+NSB2 trained models 90.2 89.4 91.7 

 
  

4. CONCLUSION AND FUTURE WORK 
 
A new approach for computationally effective detection and 
positioning of acoustic events that results from the combination of 
a beamforming-based partial signal separation and a MAP-based 
decision has been presented, and has been tested in a limited 
scenario with two sources. Although the recognition rate of the 
proposed technique with one array is lower than those from the 
other two tested techniques, when two arrays are employed, it is 
higher than the recognition rate from the much more 
computationally demanding BSS technique. On the other hand, the 
model-based approach has the drawback of a limited scalability 
regarding both the number of event classes and the number of 
simultaneous sources. Furthermore, the proposed technique does 
not need the posterior assignment of event hypothesis to source 
positions that the other two techniques require. 

Future work will be addressed to employ the full set of linear 
arrays that exist in the smart-room, and also to extend the scenario 
to three or more simultaneous sound sources. 
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