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ABSTRACT

Inspired by the system presented in [1], we have devel-
oped novel auditory-model-based features that preserve the
fine time structure lost in conventional frame-based features.
While the original auditory model is computationally intense,
we present a simpler system that runs about ten times faster
but achieves equivalent performance. We use these features
for video soundtrack classification with the Columbia Con-
sumer Video dataset, showing that the new features alone
are roughly comparable to traditional MFCCs, but combining
classifiers based on both features achieves a substantial mean
Average Precision improvement of 15% over the MFCC base-
line.

Index Terms— Acoustic signal processing, Multimedia
databases, Video indexing, Auditory models

1. INTRODUCTION

As the means to collect and share video and audio become
increasingly ubiquitous and cheap, tagging and retrieval of
multimedia content become increasingly important. Although
much of this work focuses on the visual content of a video,
modeling the audio content can also prove helpful for the
purpose of search and indexing. A standard approach to
characterizing audio content uses mel-frequency cepstral co-
efficients (MFCCs), which are short-time spectral features.
There are on-going efforts to identify other useful features
in this domain and novel methods for employing them in
retrieval tasks. The authors of this work have previously
investigated a number of novel features for this task, for
example in [2].

In [1, 3], features based on an auditory model were pre-
sented for use in audio recognition. In contrast to traditional
features which average the signal spectrum over 20-30 ms
windows, the auditory model features attempt to preserve the
fine temporal structure of the sound via a “stabilized image”
of the waveform. These features were used in conjunc-
tion with the “passive-aggressive” model for image retrieval
(PAMIR) as the learning mechanism. The authors showed

that these features performed as well as or better than tra-
ditional MFCC features for retrieval tasks, and that they are
particularly useful for the identification of sounds in mix-
tures. Since we are working with broadly similar problems
of classifying unconstrained environmental audio, we inves-
tigated this system. We began by attempting to replicate their
system as closely as possible and test it on a retrieval task on
a corpus of tagged consumer video soundtracks.

The next sections introduce our data/domain, and then de-
scribe our results using an available implementation of the
auditory model front end, both with the original PAMIR re-
trieval model, and with more conventional Support Vector
Machine (SVM) classifications. Sections 5 and 6 describe our
modifications to the original system to reduce the dimension-
ality of the representation, and to simplify the overall calcula-
tion to reduce its computational burden. Section 7 describes
the further improvements we obtained by fusing these novel
features with the existing baseline MFCCs.

2. DATASET AND TASK

We performed all evaluations on the Columbia Consumer
Video (CCV) dataset described in [4]. This is a set of 9,317
video clips from YouTube, comprising 210 hours of video.
The clips are tagged with 20 semantic categories. For all
our experiments, the metric used was average precision of
retrieval results for each category, with the mean average pre-
cision (mAP) over all categories serving as the main objective
index of performance.

3. STABILIZED AUDITORY IMAGE FEATURES

The system of [1, 3] has a multi-step feature generation pro-
cess. First the signal is passed through a time-varying fil-
terbank intended to model the cochlea, including its local
loudness adaptation (through changes in individual filter reso-
nance). The filterbank outputs are then integrated using what
the authors call strobed temporal integration. Strobe (peak)
points are identified, and the signal is cross-correlated with a
sparse function that is zero except at these strobe points. This
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is done separately in each filter channel, resulting in a two-
dimensional (number of channels × time lag) image, termed
the stabilized auditory image (SAI). (In lieu of a more detailed
description, please see the presentation of our simplified au-
ditory model features in section 6). In their experiments an
SAI is generated every 20 ms to characterize the audio sig-
nal at that point. Then a sequence of SAIs is converted into
features using a sparse code representation as follows: Each
SAI is overlaid with a set of rectangular patches of different
sizes. Each of these rectangles defines a local region of inter-
est on the SAI. The set of rectangle features is collected over
all data, and each rectangle region is vector quantized (VQ)
separately. A single SAI is then represented by a sparse code
whose dimensionality is the number of rectangles times the
size of each VQ codebook. An audio clip is represented as
the sum of its SAI codes (essentially, a set of histograms).

To approximate this system, we used a publicly-available
C++ codebase, AIM-C [5], that computes stabilized auditory
images that are similar though not completely identical to
those described in [1]. The audio data is first downsampled
to 16 kHz and processed with AIM-C to produce a series
of SAIs. The SAIs were then cut into 24 rectangles, using
the box-cutting method described in [1], where the smallest
boxes were 32 frequency channels by 16 time steps. Each di-
mension was then doubled systematically until the edge of the
SAI was reached. We then downsampled and quantized each
of the 24 rectangles with a 1000-codeword dictionary learned
by k-means on the training set. This leads to a representation
of each video clip as a sparse 24,000-element vector which is
essentially the concatenation of the histograms over each of
the 24 rectangles.

4. PAMIR VERSUS SVM LEARNING

As in [1], we initially used PAMIR as the learning method
in our system. PAMIR is an algorithm for learning a linear
mapping between input feature vectors and output classes or
tags. PAMIR is especially efficient to use on sparse feature
vectors (such as the extremely high dimensional histograms
described above), which is one reason the authors chose it.

We were unable to get particularly good performance
from PAMIR. PAMIR is theoretically useful for learning as-
sociations reasonably quickly when the scale of the data is
very large. However, in reality our experiments consisting
of thousands, but not millions, of data items, were not large
scale enough to necessitate the use of PAMIR. We realized
that we could obtain better results by combining SAI fea-
tures with more standard learning techniques such as support
vector machines (SVMs).

Figure 1 compares the performance of SAI features using
PAMIR and SVM learning techniques. As in [1], we compare
the novel SAI features with a baseline system using standard
MFCC features. Here, we used 20 MFCC coefficients and
also added deltas and double deltas, for 60 dimensional fea-
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Fig. 1. Baseline system comparisons: MFCC and SAI fea-
tures, in conjunction with both PAMIR and SVM learning
methods.

ture vectors. For consistency with the SAI features, MFCC
frames were vector quantized and collected into a single
3000-codeword histogram representation for each video clip.
Figure 1 also shows results using these MFCC features with
both learning methods. In our experiments, SVM learning
significantly outperforms PAMIR on both feature sets. SAI
and MFCC features perform roughly comparably to each
other although MFCCs perform slightly better under both
learning methods.

5. REDUCTION OF FEATURE SET SIZE

We were interested in investigating how the set of rectangle
features selected influenced the final results. Specifically we
wondered to what extent we could minimize the number of
rectangles (in order to reduce feature vector size) while retain-
ing a similar level of performance. The authors of [1] experi-
mented with numerous rectangle cutting strategies but did not
offer strong conclusions about the extent to which larger num-
bers of rectangles can lead to improved performance. Since
their cutting method results in rectangles that overlap, there is
presumably some duplicate information. Our goal was to see
if we could minimize the number of rectangles while main-
taining high performance.

We experimented with reducing the set of rectangles in
various ways. The original set of 24 rectangles consists of
rectangles covering four different frequency ranges (low fre-
quency, high frequency, mid frequency overlapping both low
and high, and all frequency bands together), at each of six
timescales (where each timescale is twice as long as the pre-
vious one). We were able to achieve performance very close
to the full set using only eight rectangles. Specifically, we
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Fig. 2. Comparison of SVM systems using: full set of 24 SAI
rectangles (24,000 dimensions), a reduced set of 8 SAI rect-
angles (8,000 dimensions), and the simpler SBPCA features
(4,000 dimensions).

removed all rectangles from the mid frequency and full fre-
quency ranges, keeping only high and low frequency rect-
angles. We also removed the largest two timescales, keep-
ing only the shortest four. Figure 2 compares the SAI and
SVM system using all 24 rectangle features (SAI) with only
these eight rectangle features (SAI reduced), demonstrating
that performance remains very similar between the two. The
figure also includes our reformulated auditory model features,
described below.

6. SUBBAND PCA FEATURES

Even using a reduced number of rectangles in the final quan-
tization, the calculation of SAI features is a relatively slow
process. Since our target application is for very large multi-
media archive (up to thousands of hours), we wanted to see
if we could retain the performance of this type of feature but
with simpler processing. The goal was to identify a simpler
feature set that could capture information similar to the cross-
correlations of the strobed temporal integration process used
to produce SAIs. We decided to try a set of features based on
subband autocorrelations. These features were based on ear-
lier work in pitch tracking in our group [6], and consist of the
first ten coefficients obtained from principal component anal-
ysis (PCA) on the normalized autocorrelations in each of 24
frequency subbands spanning center frequencies from 100 Hz
to 1600 Hz with six bands per octave, and a Q of 8. Like the
SAI features, we hoped these would capture some of the fine
temporal structure not typically captured in traditional MFCC
features. Unlike SAIs, the filterbank is time-invariant, and
the correlation does not depend on any strobe instant selec-

tion. Analogously to the SAI rectangle features, we divided
the 24 subbands into 4 (non-overlapping) frequency ranges,
and vector quantized each of these 10 × 6 subband coeffi-
cient feature sets into 1000 codewords, for a total of 4000
dimensions. Figure 3 illustrates the entire calculation process
for these features.

Figure 2 also includes the performance of this subband
PCA (SBPCA) feature set compared to the full- and reduced-
dimensionality SAI features. Although the SBPCA features
show a slight drop in performance, they perform nearly as
well as the SAI features. Significantly, calculation of these
SBPCA features is about an order of magnitude faster than
the SAI features: Both features are computed using reason-
ably optimized compiled C++ code, but SAI features can take,
on average, 8× longer than real time to calculate. In contrast,
SBPCA features can be calculated in around 0.6× real time.
Especially when working with large amounts of data, this dif-
ference is enormous.

7. IMPROVEMENT WITH CLASSIFIER FUSION

At this point we have developed two sets of features that per-
form relatively comparably with traditional MFCC features,
but are based on very different processing chains. In the past
we have observed that feature sets capturing diverse informa-
tion about the data will combine in a complementary way to
produce a noticeable performance improvement. We there-
fore tried the same approach here, and used margin fusion
(adding together the output decision value of each SVM clas-
sifier) to create classifiers based on different feature sets. We
combined MFCCs with both the SAI and SBPCA features in
this way. Figure 4 shows the performance of the three in-
dividual systems and the two combinations. Adding either
auditory model feature to MFCCs gives a very substantial
increase in mAP, with SBPCA features slightly better than
SAIs. The baseline mAP performance of 0.34 for MFCCs
alone improves to 0.40 in combination with SBPCAs, a rela-
tive improvement of around 18%.

8. DISCUSSION AND CONCLUSIONS

In the course of these experiments, we investigated a num-
ber of different approaches to video soundtrack classifica-
tion. We draw several conclusions. Initially, we verified that
SAI features perform well for audio classification, although
they did not actually outperform traditional MFCC features
in our scenario (which is significantly different from the iso-
lated sounds used by [1, 3]). We observed that a standard ma-
chine learning technique (SVMs) significantly outperformed
the PAMIR approach (although PAMIR may prove more use-
ful on very large amounts of data where SVMs are infeasible).
We demonstrated that the SAI feature dimensionality can be
reduced significantly without significantly lowering perfor-
mance. We discovered that a novel feature set, SBPCA, com-
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Fig. 3. Block diagram of the calculation of the subband autocorrelation PCA feature vectors.
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Fig. 4. SVM results with each individual feature set (MFCC,
SAI, SBPCA) and margin fusion of MFCC with each of the 2
novel features.

pares favorably with SAI features but with significantly less
processing overhead. Finally, we demonstrated that both SAI
and SBPCA features can be combined with MFCC features
for an overall performance improvement that is considerably
better than our previous MFCC baseline. Since SBPCA fea-
tures are reasonably fast to calculate (at least relative to SAIs),
we believe that they are a promising direction to investigate
for capturing information from fine temporal structure that is
excluded from traditional feature. We believe this can sig-
nificantly improve the performance of future audio classifier
systems, especially when used in conjunction with more tra-
ditional features.
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