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ABSTRACT
In this paper, a novel algorithm named Sparsity-based Wiener plus
Dictionary Learning (SWDL) is proposed for single channel speech
enhancement. SWDL combines both Wiener filter and dictionary
learning technique. The Wiener filter is used to ensure the enhanced
speech is statistically optimal, while the dictionary learning tech-
nique is used to improve the enhanced speech quality and intelli-
gibility by utilizing speech-specific information. Such information
is incorporated in the pre-trained speech dictionary that can sparse-
ly represent the clean speech spectra. When applied to the TIM-
IT database, SWDL outperforms the Log Mean Square-Error Short-
Time Spectra Amplitude estimator (LSTSA) according to four dif-
ferent objective metrics measuring speech quality and intelligibility.
Subjective tests also show that SWDL produces better speech quality
and intelligibility than LSTSA.

Index Terms— Speech Enhancement, Dictionary Learning,
Nonnegative Matrix Factorization, Wiener Filtering

1. INTRODUCTION
Single-channel speech enhancement algorithms aim to improve
the quality and intelligibility of noisy speech signals. Several ap-
proaches have been proposed towards this problem (see [1] for
an overview), a large number of which are statistical approaches.
For example, [2, 3] and a perceptually motivated variation [4] es-
timate the amplitude of the short-time-Fourier transform (STFT)
of the speech signal by assuming a Gaussian prior distribution in
a Bayesian framework. [5] estimates the speech STFT using non-
Gaussian speech priors in a maximum a posteriori framework. The
common aspect of these statistical methods is that their performance
heavily relies on the estimation of the signal-to-noise ratio (SNR),
which is directly estimated from the noisy speech. When the SNR
is estimated correctly, statistical methods typically produce satis-
factory results. However, in moderate to low SNR, these methods
inaccurately estimate the SNR and hence produce noticeable en-
hancement artifacts that adversely impact both intelligibility and
quality. Furthermore, statistical approaches do not explicitly model
or capture characteristics of speech signals. One potential exten-
sion of these approaches therefore is to incorporate speech-specific
information into their formulation.

Dictionary Learning is an increasingly popular machine learn-
ing approach that can capture properties of speech signals. Atoms of
a dictionary serve as the building blocks for a speech database, and
each observation (e.g., the magnitude spectrum of a speech signal)
is modeled as a linear combination of these atoms. The dictionary
atoms are learned during a training phase that ensures optimal re-
construction of the database [6, 7, 8]. Since the speech observation
can be reconstructed by the atoms, these atoms necessarily capture
the salient properties of speech. Dictionary learning was first applied
in audio processing for monaural sound separation [9, 10], wherein

each sound source was represented by a separate dictionary. Recent-
ly, various works [11, 12, 13, 14] have applied dictionary learning
to speech enhancement by viewing speech and noise as two sound
sources, and training a dictionary for each source.

This paper describes a novel algorithm, called Sparsity-based
Dictionary Learning (SWDL), that combines a statistical enhance-
ment technique, i.e., the Wiener filter, with dictionary learning to
improve the intelligibility and quality of the enhanced speech. Sim-
ilar to the statistical methods, SWDL relies on signal statistics and
SNR estimation to remove noise in the processed speech. Addition-
ally, dictionary learning is applied to preserve the speech characteris-
tics in the processed signal, thereby constraining the artifacts caused
by inaccurate SNR estimation. Compared with existing dictionary
learning works [11, 12, 13, 14], this work does not take a source
separation perspective and uses only a speech dictionary.

This paper assumes the linear combination weight in dictionary
learning is sparse, as assumed in [11, 14]. However, they used a
fixed, pre-determined parameter to control the sparsity of the weight.
This paper proposes an adaptive parameter to control the sparsity,
which is computed automatically from the input noisy speech.

In the remainder of this paper, we will first describe the pro-
posed speech enhancement algorithm and the method for selecting
the sparsity parameter. We will then present the performance of the
algorithm using objective and subjective evaluations, and draw con-
clusions and discuss future research directions.

2. METHOD

Notation: An upper case letter denotes a matrix, and a lower case
letter denotes either a vector or a scalar depending on the contex-
t. Xk,n represents the kth row and nth column of the matrix X .
The nth column of a matrix X is denoted by Xn. Bold face repre-
sents complex-valued quantities. For complex-valued Xk,n, Xk,n

and θk,n denote its magnitude and phase respectively. ‖X‖1 =
∑

k,n
|Xk,n| denotes the sum of the absolute values of all entries.

‖x‖2u =
∑

i
ui|xi|

2 represented the weighted L2-norm. RK×M
+ de-

notes the set of K × M matrices with nonnegative entries.
⊙

and
≥ denote entry-wise multiplication and entry-wise “greater or equal
to” respectively.

2.1. System Model

Let x(t), y(t) and v(t) denote, respectively, the clean speech, the
observed noisy speech, and the noise, at time index t. In the s-
ingle channel additive model, we assume y(t) = x(t) + v(t).
Applying STFT, the equivalent time-frequency model is Yk,n =
Xk,n + Vk,n, where Yk,n, Xk,n, and Vk,n denote, respectively,
the complex-valued spectrum of y(t), x(t) and v(t), at frequency
bin k ∈ {1, 2, · · · , K} and at time frame n ∈ {1, 2, · · · , N}.
Xk,n and Vk,n are assumed to be independent zero-mean random
variables with variance ς2k,n and σ2

k,n, respectively.
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2.2. Proposed Formulation

The enhanced spectrum X̂k,n is obtained by multiplying the ob-
served noisy spectrum Yk,n with a potentially complex-valued gain
coefficient hk,n. The Wiener filter can be used to find the optimal
gain coefficients that minimize the mean square error between the
enhanced speech and the clean speech according to the following:

hk,n = argmin
h

1

2
E
[

‖hYk,n −Xk,n‖
2]

= argmin
h

1

2

(

ς
2
k,n + σ

2
k,n

) (

h− h
w
k,n

)2
(1)

where hw
k,n ,

ς2k,n

ς2
k,n

+σ2

k,n

is known as the Wiener gain coefficien-
t. Because the Wiener gain coefficient is real and non-negative, the
phase of the enhanced spectrum is the same as that of the noisy spec-
trum, and the Wiener gain only scales the magnitude of the noisy
spectrum. Therefore, in the remainder of this paper, we consider on-
ly the spectrum magnitude and refer to it as the “spectrum”, unless
otherwise specified. Using a change of variable h = x

Yk,n
, we can

reformulate the Wiener filter (1) into the following

X̂k,n = argmin
x

1

2

(

ς
2
k,n + σ

2
k,n

)

(

x

Yk,n

− h
w
k,n

)2

= argmin
x

1

2

1 + ξk,n

γk,n

(

x−X
w
k,n

)2
(2)

where Xw
k,n , hw

k,n×Yk,n, ξk,n ,
ς2k,n

σ2

k,n

denotes the a priori SNR,

and γk,n ,
Y 2

k,n

σ2

k,n

denotes the a posteriori SNR. The Wiener filter

(2) is now cast as an unconstrained optimization problem over all
possible spectra.

We will now leverage dictionary learning to capture speech char-
acteristics in the spectrum domain, and use it to transform (2) into a
constrained optimization to reduce artifacts and improve intelligibil-
ity. In particular, we exploit the fact that a clean speech spectrum can
be written as a non-negative sparse linear combination of a proper-
ly designed dictionary. To formalize ideas, let x ∈ RK×1

+ denote
the clean speech spectrum of a particular time frame, D ∈ RK×M

+

denote the dictionary, and g ∈ RM×1
+ denote the gain coefficien-

t, where typically M >> K to allow overcomplete representation.
Then

x ≈ D × g, and g is a sparse vector (3)

Columns of D, called atoms, serve as the basic building blocks that
can approximate any clean speech spectrum. Equation (3) implies
that the clean speech spectrum can be written as a weighted sum of
only a few atoms; however, different speech spectra can use differ-
ent sets of atoms. Provided D is chosen properly, the sparsity of the
gain coefficient plays an important role in capturing the speech char-
acteristics. Specifically, the sparsity assumption implies that for any
x̂ that can be expressed as D× g, only those x̂ for which g is sparse
will typically approximate clean speech. In other words, one way to
ensure x̂ approximates clean speech is to search for a sparse g that
can represent x̂ using D.

We will now illustrate how such a sparse gain coefficient g can
be estimated given the dictionary D, and defer the training of the
sparsity-inducing dictionary D to the next section. Assuming Xw

k,n

is known, the proposed SWDL formulation is shown in (4):

X̂n = D × ĝ

ĝ = argmin
g≥0

K
∑

k=1

{

1

2

1 + ξk,n

γk,n

(

(Dg)k,n −X
w
k,n

)2
}

+ β‖g‖1

= argmin
g≥0

1

2
‖Dg −X

w
n ‖2un

+ β‖g‖1 (4)

where un = [
1+ξ1,n
γ1,n

, · · · ,
1+ξK,n

γK,n
]T

We constrain the enhanced spectrum X̂n (optimization variable
of (2)) to be represented by the properly-chosen D and a gain co-
efficient ĝ, and use the L1-norm regularization term to promote the
sparsity of ĝ. The problem is now converted into a constrained op-
timization over gain, with the parameter β controlling the sparsity
level. Thus, SWDL still uses the mean square error as the objective,
but additionally requires that the enhanced spectrum be sparsely rep-
resented by the dictionary. Since the enhanced speech spectrum has
a sparse representation under D, our constrained formulation is ex-
pected to result in better performance than the unconstrained one.

The overall SWDL algorithm is summarized in Algorithm 1.
The calculation of the required signal statistics for speech enhance-
ment occurs in step 4. We use a decision directed approach for a
priori SNR estimation, using an adaptive weight αk,n as proposed in
[15]. For the quadratic minimization with a nonnegative constraint
(4), we use the optimal first order method proposed by Nesterov [16]
due to its simplicity and efficiency.

Algorithm 1 SWDL

Require: : noisy speech y(t), dictionary D, sparsity parameter β
1: Y = Y

⊙

exp(jθ) = STFT(y(t))
2: for n = 1 → N do
3: Estimating noise power σ2

k,n

4: Estimating ξk,n and γk,n

γk,n =
Y 2
k,n

σ2
k,n

ξk,n = αk,n

X̂2
k,n−1

σ2
k,n

+ (1− αk,n)γ̄k,n (5)

αk,n =
1

1 +
(

γ̄k,n−ξk,n−1

1+γ̄k,n

)2
(6)

γ̄k,n = max[γk,n − 1, 0]

5: Estimating Xw
k,n: Xw

k,n =
ξk,n

1+ξk,n
Yk,n

6: Estimating X̂k,n

X̂n = D × ĝ

ĝ = SWDL (4) (7)

7: end for
8: Enhanced STFT: X̂ = X̂

⊙

exp(jθ)

9: return Enhanced speech: x̂(t) = IFFT(X̂)

2.3. Dictionary Training

The SWDL assumes that there exists a dictionary D such that
clean speech spectra can be represented sparsely. In practice, such
a sparsity-inducing dictionary need to be properly trained during
a training stage. In the training stage, we use sparse Nonnega-
tive Matrix Factorization (NMF) [8] to arrive at such a dictionary.
Specifically, let X denote the collection of speech spectra from the
training sentences. Then the desired dictionary is obtained by solv-
ing problem (8), which enforces the dictionary to well-represent the
speech using a sparse gain matrix:

[D,G] = arg min
D≥0,G≥0

1

2
‖X −DG‖2F + βt‖G‖1 (8)

Even though the general NMF problem has been shown to be NP-
hard [17], we use an efficient algorithm proposed in [8] to approxi-
mately solve (8).
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2.4. Automatic β Selection for SWDL

The sparsity coefficient β is a key parameter: the higher the β, the s-
parser the gain coefficient ĝ. In this section, we will present a method
for selecting β from the noisy speech automatically. Given a noisy
observation Y, let X̂β be the enhanced signal using the parameter
β. Intuitively, if X̂β is a good estimate of the clean speech spectrum,
then the power of the estimated noise, i.e., ||X̂β − Y||2, should be
close to the true noise power:

E(β) ≡ ‖X̂β −Y‖2 ≈ ‖X−Y‖2 =
∑

k,n

σ
2
k,n (9)

Thus, the optimal β∗ is the β that makes (9) true. The noise power
σ2
k,n is typically estimated from the noisy speech directly. Figure

1 illustrates how E(β) varies with β. The monotonicity of E(β)
can be explained by the fact that the larger the β, the sparser the G,
hence the smaller the X̂β and the larger the value of E(β). This was
also confirmed empirically in our experiments across different noise
types and SNR values. Such monotonicity suggests that a simple
bisection scheme can be used to find the optimal β∗.

Interestingly, the optimal β∗ found in this way is also percep-
tually meaningful. Figure 1 also shows the variation of two percep-
tually motivated objective metrics, Perceptual Evaluation of Speech
Quality (PESQ, [18]), and Intelligibility Index (I3, [19]), as a func-
tion of β. PESQ is an objective metric that assesses the quality of
processed speech using the loudness difference between clean and
processed speech, and has been shown to correlate highly with the
quality of speech processed by noise reduction algorithms. PESQ
ranges from 1 (bad quality) to 4.5 (excellent quality). I3 is an ob-
jective metric similar to the Speech Intelligibility Index (SII) [19]
that assesses the intelligibility of the processed speech, and ranges
from 0 to 1. The PESQ and I3 curves of Figure 1 were obtained by
enhancing the noisy speech using SWDL with different values of β,
and then evaluating the enhanced speech for each β using these two
metrics. For the ease of comparison, we normalize PESQ and I3 by
their maximum values, and plot the normalized metrics in Figure 1.
Figure 1 shows that the PESQ and I3 scores using β∗ is close to the
optimal PESQ and I3 scores.
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Fig. 1. Estimated Noise Power Ratio ( E(β)
∑

k,n σ2
v(k,n)

) and normalized

PESQ and I3 (both normalized by their maximum values) versus
different β value in −5dB AWGN noise. β∗ is the selected β

3. PERFORMANCE EVALUATION

The quality and intelligibility of the speech processed by SWDL was
compared with that processed by the Wiener filter, LSTSA [2] and
unprocessed speech through objective evaluations. Since the Wiener

filter was outperformed by the LSTSA in most scenarios of this eval-
uation, subjective comparison was performed only with the LSTSA,
and we report only comparisons with the LSTSA in this paper.

The TIMIT database [20] was used for evaluation due to the
availability of a large database for dictionary training. One universal
dictionary was trained for each gender of speakers, each using one
hour of speech selected randomly form the “train” subset. For en-
hancement (test), 320 male sentences and 160 female sentences were
selected randomly from the “test” subset. Four different stationary
noises (White Gaussian Noise, Speech Shape Noise, Vacuum, and
Airplane) were added to each test sentence at three different SNRs
(−5, 0, 5 dB). The active speech level of the clean speech signal was
first determined using the method B of ITU-T P.56 [21], and the
noise sample was then appropriately scaled and added to the clean
speech to obtain the desired SNR. All noisy signals were processed
by each of the 2 algorithms (SWDL, LSTSA). For the objective e-
valuation, all processed samples were evaluated. For the subjective
evaluation, only a subset of the processed samples were used, as de-
scribed below.

All sentences were sampled at 8 kHz, and segmented into 30-ms
duration frames using a Hamming window with 50% overlap. A 512
point FFT/IFFT was used for the time-frequency analysis and syn-
thesis operations. To eliminate the effect of inaccurate noise power
estimation, we assumed the true noise power was known for SWDL
and LSTSA. In LSTSA, we fixed αk,n for the a priori SNR estima-
tion (5) to 0.98 [2]. For SWDL dictionary training, the dictionary
size (M ) was set to 512 and the sparsity constant (βt) to 0.001.

3.1. Objective Evaluation
We used PESQ [18] to evaluate the quality and I3 [19] to assess the
intelligibility of the processed signals (see section 2.4). Segmental
SNR [22] was used to measure the residual distortions in the pro-
cessed speech compared to the clean speech. The background noise
reduction was measured using Cbak [23]. For all objective measures,
higher values indicate better performance. Figure 2 shows standard
error plots for the performance of the three treatments (SWDL, L-
STSA, unprocessed) using each of the four metrics. Each error plot
shows the standard deviation of the metric scores (whiskers) about
their mean values (circle), for a given SNR and treatment and aver-
aged across all noise types.

Analysis of variance (ANOVA) performed individually for each
SNR indicated a highly significant effect of speech enhancement on
all four metrics (p < 10−5 for all SNRs and metrics). Multiple
comparison tests according to Tukey’s HSD test [24] indicated that
SWDL consistently produced a significant improvement (p < 10−5)
over LSTSA at all SNRs, and across all four metrics.

Since the speakers and the sentences used in dictionary training
and evaluation were different, it is fair to say that the SWDL gen-
eralized well to unseen data. In a preliminary study, however, we
found the performance of SWDL improved when the dictionary was
customized to each individual speaker. In this work, we present only
the results of using a universal dictionary, and defer a comprehen-
sive investigation of the performance using a customized dictionary
to the future.

3.2. Subjective Evaluation

The SWDL algorithm was compared to the LSTSA and unprocessed
speech for quality and intelligibility using subjective experiments.
Only the Speech-Shaped Noise (SSN) and Vacuum noise at SNRs
(−5, 0, 5 dB) were evaluated, giving a total of six conditions over the
three treatments (SWDL, LSTSA, unprocessed) for each experimen-
t. For subjective evaluation, only a subset of the sentences used for
the objective evaluation was used: low-context sentences between 4
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Fig. 2. Error plots showing the performance of unprocessed speech,
SWDL and LSTSA at different SNRs based on four different objec-
tive measures. The result is averaged over four noise types (AWGN,
SSN, Vacuum, Airplane) and all 480 test sentences.

and 10 words long, from male speakers. For clarity, the term “stim-
ulus” refers to a test sentence under a given treatment.

Nine native American English speakers with normal hearing (all
employees of Starkey Hearing Technologies) participated in the s-
tudy. Each subject participated in one Intelligibility and one Quality
session, and the sessions were spaced one week apart. There was no
overlap of stimuli between the two sessions for any subject. Subjects
were presented four stimuli per condition per treatment for the Intel-
ligibility and Quality sessions. The test data was staggered across
subjects such that each stimulus received an equal number of re-
sponses. The presentation order of the stimuli was randomized for
each session. The stimuli were scaled such that the active speech lev-
el [21] of the clean speech (i.e., before noise addition and reduction)
was 79 dB Sound Pressure Level (SPL). The stimuli were presented
diotically via Sennheiser HD600 supra-aural headphones.

For the intelligibility session, subjects were asked to repeat al-
l the words they heard, and the percentage of correctly identified
words was calculated. For the quality session, subjects were asked
to rate the overall quality of the stimulus on a scale of 1 to 5, taking
into account both the speech distortions and background intrusions,
as recommended in ITU-T P.835 [25]. A score of 1 indicated Bad
quality, and a score of 5 indicated Excellent quality.

Figure 3 shows standard error plots for the quality ratings and
word recognition rates from the subjects. The data for the two noise
types are shown in separate plots. Each error plot shows the stan-
dard deviation of the subject responses (whiskers) about their mean
response (circle), for a given condition and treatment. For some of
these conditions and treatments, the subject responses were not nor-
mally distributed (Lilliefors test [26] at the p < 0.005 significance
level) due to flooring or ceiling effects. The flooring effect was like-
ly due to the difficulty of the task at low SNR, and the ceiling effect
likely due to the ease of the task at high SNR. For the sake of con-
sistency, these responses were also represented using error plots, but
a cross mark (“x”) was used to identify such data.

Analysis of variance (ANOVA) was performed only for the con-
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Fig. 3. Error plots for the subject responses in the Quality (left) and
Intelligibility (right) tests for SSN (top) and vacuum noise (bottom)
and for the three SNRs. A cross (“x”) under an error plot indicates
that the data was not normally distributed and showed a flooring or
ceiling effect for that treatment. The text under a set of error plots
indicates the F-statistic and p-value for ANOVA using that set of
treatments.

ditions wherein all three treatments were normally distributed. The
F-statistic and p-value for each ANOVA analysis are given under-
neath the corresponding error plot in Figure 3. ANOVA indicated
a significant effect of speech enhancement on intelligibility at 0 dB
SNR for both noise types. Furthermore, multiple comparison tests
according to Tukey’s HSD test [24] indicated that SWDL produced
a significant improvement (p < 0.05) in intelligibility over LSTSA
at 0 dB SNR for both noise types. This is in line with predictions
by the objective evaluation (Figure 2(b)). ANOVA also indicated a
significant effect (p < 0.05) of speech enhancement on speech qual-
ity for vacuum noise at 5 dB SNR, in which case the SWDL showed
a significant improvement over LSTSA. In all other conditions, the
SWDL and LSTSA showed insignificant difference.

These objective and subjective results indicate that the SWDL
outperforms or matches the LSTSA in quality and intelligibility ben-
efits. This superior performance emphasizes the advantage that the
SWDL offers over the LSTSA, in terms of capturing speech charac-
teristics by using a dictionary.

4. CONCLUSION AND FUTURE WORK
In this paper we describe SWDL, a novel algorithm combining the
Wiener filter with dictionary learning for speech enhancement, and
demonstrate its superior performance through objective evaluation
and subjective evaluation. SWDL currently captures speech charac-
teristics in the frequency domain but not in the time domain. Since
speech exhibits unique spectro-temporal characteristics, we plan
to extend SWDL to jointly capture the spectro-temporal informa-
tion. We also plan to customize the dictionary towards individual
phonemes to capture their distinct characteristics.
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