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ABSTRACT

This paper presents multichannel Wiener filtering-based algorithms

for noise reduction in cochlear implants. In a single speech scenario,

the autocorrelation matrix of the speech signal can be approximated

by a rank-1 matrix. It is then possible to derive noise reduction filters

that deliver improved signal-to-noise ratio performance. The link

between these different filters is investigated here and an eigenvalue

decomposition based algorithm is demonstrated to be more stable at

low input signal-to-noise ratio compared to previous algorithms.

Index Terms— Speech enhancement, multichannel Wiener fil-

ter, cochlear implant, rank-1, eigenvalues decomposition

1. INTRODUCTION

A major challenge in cochlear implant (CI) is to improve the speech

understanding in noise [1] and so having an efficient front-end noise

reduction (NR) is important. Therefore, during the past years, sev-

eral NR algorithms have been developed and tested with CI recipi-

ents [2, 3, 4].

In general, CI users need a 10dB to 25dB higher signal-to-noise

ratio (SNR) than normal hearing listeners to achieve similar speech

understanding performance [5]. This could motivate the use of more

aggressive NR strategies. Speech distortion weighted multichannel

Wiener filters (SDW-MWF) have been developed to allow to tune

multichannel Wiener filter (MWF)-based NR and perform a more

aggressive NR by allowing more speech distortion (SD) [6, 7, 8]. In

the case of a single speech source the SDW-MWF performance can

be improved if the filters are reformulated based on the assumption

that the speech autocorrelation matrix is rank-1, leading, e.g., to the

so-called spatially-preprocessed MWF (SP-MWF) [9, 10].

All these NR algorithms rely on the estimation of the speech au-

tocorrelation matrix. At low SNR, the speech autocorrelation matrix

can be wrongly estimated and become non positive semi-definite.

The SDW-MWF and the SP-MWF can then behave unpredictably.

A solution to this problem is then to select a rank-1 approximation

based on an eigenvalue decomposition (EVD) of the speech autocor-

relation matrix. This paper also presents a performance comparison

This research work was carried out at the ESAT Laboratory of KU Leuven, in
the frame of KU Leuven Research Council CoE EF/05/006 Optimization in Engineer-
ing (OPTEC), IWT Project ’Signal processing and automatic fitting for next generation
cochlear implants’, PFV/10/002 (OPTEC), Concerted Research Action GOA-MaNet,
the Belgian Programme on Interuniversity Attraction Poles initiated by the Belgian Fed-
eral Science Policy Office IUAP P6/04 (DYSCO, ‘Dynamical systems, control and op-
timization’, 2007-2011), Research Project FWO nr. G.0600.08 (’Signal processing and
network design for wireless acoustic sensor networks’), EC-FP6 project SIGNAL: ’Core
Signal Processing Training Program’. The scientific responsibility is assumed by its au-
thors.

between the original SDW-MWF and the EVD-based NR applied on

both bilateral and binaural set-ups [11, 12, 13, 14].

The signal model and the SDW-MWF-based NR are described

in Section 3. Section 4 describes the so-called first column decompo-

sition and how this providesan interpretation of the SDW-MWF and

the SP-MWF. The EVD-based NR is introduced in Section 5. The

performance of the original SDW-MWF and the EVD-based NR are

compared in Section 6. Finally, Section 7 presents a summary of the

paper.

2. RELATION TO PRIORWORK

The work presented in this paper focuses on the analysis of the dif-

ference between the SDW-MWF [6, 7, 8] and the SP-MWF [9, 10]

when the rank of the estimated autocorrelation matrix of the speech

signal is higher than one. A new rank-1 approximation is also intro-

duced. While the (implicit or explicit) rank-1 approximation in the

previous work was based on a so-called first column decomposition,

the new (explicit) rank-1 approximation presented here is based on

the EVD.

3. BACKGROUND AND PROBLEM STATEMENT

3.1. Signal model

Let M be the number of microphones (channels). The frequency-

domain signal Xm(ω) for microphone m has a desired speech part

Xm,s(ω) and an additive noise part Xm,n(ω), i.e.:

Xm(ω) = Xm,s(ω) + Xm,n(ω) m ∈ {1 . . . M} (1)

where ω = 2πf is the frequency-domain variable. For conciseness,

ω will be omitted in all subsequent equations.

Signal model (1) holds for so-called “speech plus noise peri-

ods”. There are also “noise only periods” (i.e., speech pauses), dur-

ing which only a noise component is observed.

In practice, in order to distinguish between “speech plus noise

periods” and “noise only periods” it is necessary to use a voice ac-

tivity detector (VAD). The performance of the VAD can affect the

performance of the noise reduction. For the time being, a perfect

VAD is assumed.

The compound vector gathering all microphone signals is:

X = [X1 . . . XM ]T (2)

An optimal (Wiener) filter W = [W1 . . . WM ]T will be designed

and applied to the signals, which minimizes a Mean Squared Error
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(MSE) criterion:

JMSE = E{|E|2} (3)

Where E is the expectation operator and E is an error signal to be

defined next, depending on the scheme applied. The filter output

signal Z is defined as:

Z = W
H
X (4)

where H denotes the Hermitian transpose.

The desired speech signal is arbitrarily chosen to be the (un-

known) speech component of the first microphone signal (m = 1).
This can be written as:

DNR = e
H
1 Xs (5)

where e1 is an all-zero vector expect for a one in the first position.

The autocorrelation matrices of the microphone signals in

“speech plus noise periods”, and of the speech component and

the noise component of the microphone signals are given by:

Rx = E{XXH} (6)

Rs = E{XsXs
H} (7)

Rn = E{XnXn
H} (8)

Rn can be estimated during “noise only periods” and Rx can be es-

timated during “speech plus noise periods”. If the speech and noise

signals are assumed to be uncorrelated and if the noise signal is sta-

tionary, Rs can the be estimated by using:

Rs = Rx − Rn (9)

3.2. MWF-based Noise Reduction

The MWF aims to minimize the squared distance between the fil-

tered microphone signal and the desired speech signal. The corre-

sponding MSE criterion is:

JMSE = E{|EMWF|
2} (10)

EMWF = W
H
X− e

H
1 X

s
(11)

The MWF solution is given as:

WMWF = (Rs + Rn)−1
Rse1 (12)

The SDW-MWF has been proposed to provide an explicit trade-

off between the SD and the NR [6, 7, 8]:

JMSE = E{|WH
X

s − e
H
1 X

s|2} + µE{WH
X

n|2} (13)

The SDW-MWF solution is then given as:

WSDW−MWF = (Rs + µRn)−1
Rse1 (14)

In a single speech source scenario, the autocorrelation matrix

of the speech component of the microphone signals Rs is often as-

sumed to be a rank-1 matrix, which can then be rewritten as:

Rs = P
s
AA

H
(15)

where P s is the power of the speech source signal and A is the

M -dimensional steering vector, containing the acoustic transfer

functions from the speech source position to the hearing aid micro-

phones (including room acoustics, microphone characteristics, and

head shadow effect).

Based on this rank-1 assumption it is possible to derive the SP-

MWF [9, 10]:

WSP−MWF = R
−1

n Rse1
eH
1 Rse1

µeH
1
Rse1 + Tr{R−1

n Rse1e
H
1
Rs}

(16)

The filters (14) and (16) are fully equivalent if Rs is rank-1. In

practice, however rank(Rs) > 1 even for a single speech source

scenario and then (14) and (16) are different filters.

4. FIRST COLUMN DECOMPOSITION

When rank(Rs) > 1 the speech autocorrelation matrix Rs can still

be decomposed as:

Rs = Rs
r1

+ RZ (17)

where Rs
r1

is a rank-1 matrix and RZ is a “remainder” matrix.

The most obvious choice for Rs
r1

is then a rank-1 extension of

its first column and row, i.e.:

Rs = dd
H

σ1,1
| {z }

Rs
r1

+RZ (18)

where

σi,j = [Rs]i,j (19)

d = [1
σ2,1

σ1,1

. . .
σ1,N

σ1,1

]T (20)

RZ =

2

6

6

6

4

0 0 · · · 0
0 x · · · x
...

...
...

0 x · · · x

3

7

7

7

5

(21)

and σ1,1 is the speech power in microphone 1.

It is noted that:

Rse1 = Rs
r1
e1 + RZe1

| {z }

=0

(22)

which means that the (rightmost) “desired signal part” Rse1 in (14)

and (16) can (obviously) be replaced by the “rank-1 desired signal

part” Rs
r1
e1. The difference between the two approaches (14) and

(16) then effectively depends on how RZ is treated.

4.1. SDW-MWF

Plugging (18) into the SDW-MWF formula (14) leads to:

WSDW−MWF = (Rs
r1

+ µ(Rn +
1

µ
RZ))−1

Rs
r1
e1 (23)

This means that in the SDW-MWF Rs is replaced by Rs
r1

and the

remainder matrix RZ is effectively treated as noise (up to a scaling

with 1

µ
).

4.2. SP-MWF

Plugging (18) into the SP-MWF formula (16) leads to:

WSP−MWF = (Rs
r1

+ µRn)−1
Rs

r1
e1 (24)

This means that the SP-MWF corresponds to the SDW-MWF (14)

whereRs is replaced byRs
r1

and the remainder matrixRZ is simply

ignored. If RZ = 0 (rank-1 case) formulas (23) and (24) are again

seen to be the same.

8635



4.3. Speech autocorrelation matrix estimation

At low SNR and if the noise is non-stationary it is observed that:

Rx ≈ Rn (25)

and then the estimated speech autocorrelation matrix Rs = Rx−Rn

can loose its positive definiteness, which has been observed to lead

to filter instabilities. The first column decomposition-based filters

suffer from the same estimation problem where then the estimated

speech power in microphone 1 (σ1,1) could become negative, i.e.,

Rs
r1

is non-positive definite and so that the desired signal is ill-

defined.

5. EVD-BASED FILTERS

An alternative to the first column decomposition based rank-1 ap-

proximation would be to consider a rank-1 approximation based on

an EVD of Rs:

Rs = dmaxd
H
maxλmax

| {z }

Rs
r1

+RZ (26)

where λmax isRs’s largest eigenvalue and dmax is the corresponding

normalized eigenvector and RZ is again a remainder matrix. In this

case, the rank-1 part Rs
r1

is positive definite if the dominant eigen-

value of Rs is positive (which is more likely than the first diagonal

element σ1,1 of the matrix Rs being positive).

All the formulas introduced above can be modified based on this

decomposition.

It is noted that now:

Rsf1 = Rs
r1
f1 + RZ f1

| {z }

=0

(27)

Rs
r1
f1 = Rs

r1
e1 (28)

to be compared to (22) where

f1 = dmaxdmax(1)
∗

(29)

An analysis similar to the analysis of the first column decompo-

sition in Section 4 can then be done where Rs is replaced by Rs
r1

and the remainder matrix RZ is either treated as noise or ignored.

Equivalently, one can start from a modified SDW-MWF criterion

where the (arbitrary) e1 is replaced by f1:

JMSE = E{|WH
X

s − f
H
1 X

s|2} + µE{WH
X

n|2} (30)

5.1. SDW-MWFEVD

Plugging (27) into the SDW-MWF formula corresponding to (30)

leads to:

WSDW−MWF = (Rs
r1

+ µ(Rn +
1

µ
RZ))−1

Rs
r1
f1

| {z }

Rs
r1

e1

(31)

This means that in the SDW-MWFRs is replaced by the EVD-based

Rs
r1

and the remainder matrix RZ is effectively treated as noise (up

to a scaling with 1

µ
).

5.2. SP-MWFEVD

Plugging (27) into the SP-MWF formula corresponding to (30) leads

to:

WSP−MWF = (Rs
r1

+ µRn)−1
Rs

r1
f1

| {z }

Rs
r1

e1

(32)

This means that in the SP-MWF Rs is replaced by the EVD-based

Rs
r1

and the remainder matrix RZ is simply ignored.

6. EXPERIMENTAL RESULTS

6.1. Experimental setup

The simulations were run on acoustic path measurements obtained in

a reverberant room (RT60 = 0.61s [15, 16]) with a CORTEX MK2

manikin head and torso equipped with two Cochlear SP15 behind-

the-ear devices. Each device has two omnidirectional microphones.

The sound sources (FOSTEX 6301B loudspeakers) were positioned

at 1 meter from the center of the head.

The speech signal was composed of five consecutive sentences

from the English Hearing-In-Noise Test (HINT) database [17] con-

catenated with five seconds silence periods. The noise was the mul-

titalker babble from Auditec [18]. The speech source was located

at 0◦ and the noise source at 45◦ (S0N45). All the signals were

sampled at 20480Hz. The filter lengths and DFT size were set to

N = 128 and the frame overlap was set to half of the DFT size

(L = 64). When mentioned, the so-called input SNR is the SNR at

the center of the head (excluding the head shadow effects).

6.2. Performance measures

The speech intelligibility-weighted SNR (SIW-SNR) [19] is used

here to compute the SIW-SNR improvement which is defined as

∆SNRintellig =
X

i

Ii(SNRi,out − SNRi,ref ) (33)

where Ii is the band importance function defined in [20] and

SNRi,out and SNRi,ref represent the output SNR (at the consid-

ered ear) of one of the NR schemes and the SNR of the signal in

the reference microphone (at the considered ear) of the ith band,

respectively.

6.3. S0N45

Signals with input SNR varying from -15dB to 5dB are presented to

the left and right hearing aid devices. Themicrophone signal are then

filtered by several NR algorithms and the performance is compared.

The SIW-SNR improvement at the left ear for bilateral NR filters

is presented in Figure 1. The EVD-based rank-1 filters improve the

SIW-SNR by about 2dB compared to the SDW-MWF. At low SNR,

the behaviour of the SP-MWF is unpredictable, this is caused by the

sensitivity of the SP-MWF to Rs’s that are not positive definite.

The next results demonstrate how the EVD-based NR can ben-

efit from binaural setups. Three setups are considered: the bilat-

eral setup (2 microphones), a so-called binaural “front” setup where

only the signal from the front microphone of the contra-lateral ear is

shared (2+1 microphones) and a setup where both microphone sig-

nals from the contra-lateral ear are shared (2+2 microphones, this

approach is referred to as “binaural” here).

Figure 2 presents percenatge of estimated Rs’s that are not pos-

itive definite, at the left ear, as a function of the input SNR for bilat-

eral, front and binaural SDW-MWF and SDW-MWFEVD. In the
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Fig. 1. SIW-SNR performance (bilateral NR filters)

SDW-MWF based NR the positive definiteness of Rs
r1

only de-

pends on the first diagonal element of the speech autocorrelation

matrix Rs(1, 1), therefore, bilateral, front and binaural approaches

return the same percenatge of estimated Rs’s that are not positive

definite which can be as high as 65% at low SNR. In the SDW-

MWFEVD on the other hand, the positive definiteness of Rs
r1

de-

pends on λmax and each additionnal channel can help increasing this

quantity. Therefore, whereas the bilateral SDW-MWFEVD can help

to decrease the percenatge of estimatedRs’s that are not positive def-

inite from about 65% to 60% at low SNR, the front and the binaural

SDW-MWFEVD allow to decrease this percentage to around 40%.
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Fig. 2. Percentage of estimated Rs’s that are not positive definite

(SDW-MWF and SDW-MWFEVD)

Figures 3 presents the SIW-SNR improvement at the left ear.

The front and the binaural SDW-MWF allow to improve the SIW-

SNR from 2dB to 6dB depending on the input SNR. The bilateral

SDW-MWFEVD provides an SIW-SNR improvement from 2dB to

4dB for any input SNR. This is 2dB better than the SIW-SNR im-

provement of the bilateral SDW-MWF. The front and the binaural

SDW-MWFEVD provide an SIW-SNR improvement between 6dB

and 12dB depending on the input SNR. This is 4dB to 6dB better

than with the respective SDW-MWF approaches.

−15 −10 −5 0 5
−10

−5

0

5

10

15

input SNR (dB)

S
IW

−
S

N
R

 i
m

p
ro

v
e

m
e

n
t 

(d
B

)

 

 

SDW−MWF (bilateral)
SDW−MWF

EVD
 (bilateral)

SDW−MWF (front)
SDW−MWF

EVD
 (front)

SDW−MWF (binaural)
SDW−MWF

EVD
 (binaural)

Fig. 3. SIW-SNR performance (SDW-MWF and SDW-MWFEVD)

7. CONCLUSION

In this paper the difference between the SDW-MWF and the SP-

MWF (which are equivalent when the autocorrelation matrix of the

speech signal is a rank-1 matrix) is analysed when the rank of the

autocorrelation matrix of the speech signal is higher than one. In

this case, it is possible to decompose the autocorrelation matrix of

the speech signal into the sum of a rank-1 matrix and a remainder

matrix. The SDW-MWF and the SP-MWF then differs in the way

this remainder matrix is treated.

At low input SNR, due to noise non-stationnarity, the speech au-

tocorrelation matrix may become non-positive definite. An EVD-

based rank-1 approach to SDW-MWF and to SP-MWF has been

introduced. It is then again possible to decompose the autocorre-

lation matrix of the speech signal into the sum of a rank-1 matrix

and a remainder matrix and the difference between the EVD-based

SDW-MWF and SP-MWF depends in the way the remainder ma-

trix is treated. It is demonstrated that the SDW-MWFEVD allows an

improved SIW-NSR performance.
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