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ABSTRACT

After a more than decade-long period of relatively little research ac-
tivity in the area of recurrent neural networks, several new develop-
ments will be reviewed here that have allowed substantial progress
both in understanding and in technical solutions towards more effi-
cient training of recurrent networks. These advances have been mo-
tivated by and related to the optimization issues surrounding deep
learning. Although recurrent networks are extremely powerful in
what they can in principle represent in terms of modeling sequences,
their training is plagued by two aspects of the same issue regarding
the learning of long-term dependencies. Experiments reported here
evaluate the use of clipping gradients, spanning longer time ranges
with leaky integration, advanced momentum techniques, using more
powerful output probability models, and encouraging sparser gra-
dients to help symmetry breaking and credit assignment. The ex-
periments are performed on text and music data and show off the
combined effects of these techniques in generally improving both
training and test error.

Index Terms— Recurrent networks, deep learning, representa-
tion learning, long-term dependencies

1. INTRODUCTION

Machine learning algorithms for capturing statistical structure in se-
quential data face a fundamental problem [1, 2], called the difficulty
of learning long-term dependencies. If the operations performed
when forming a fixed-size summary of relevant past observations
(for the purpose of predicting some future observations) are linear,
this summary must exponentially forget past events that are further
away, to maintain stability. On the other hand, if they are non-linear,
then this non-linearity is composed many times, yielding a highly
non-linear relationship between past events and future events. Learn-
ing such non-linear relationships turns out to be difficult, for reasons
that are discussed here, along with recent proposals for reducing this
difficulty.

Recurrent neural networks [3] can represent such non-linear
maps (F', below) that iteratively build a relevant summary of past
observations. In their simplest form, recurrent neural networks
(RNNs) form a deterministic state variable h; as a function of the
present input observation x; and the past value(s) of the state vari-
able, e.g., hy = Fy(hi—1,x¢), where 0 are tunable parameters that
control what will be remembered about the past sequence and what
will be discarded. Depending on the type of problem at hand, a loss
function L(h¢,y:) is defined, with y; an observed random variable
at time ¢ and C; = L(h¢, y.) the cost at time ¢. The generalization
objective is to minimize the expected future cost, and the training
objective involves the average of C; over observed sequences. In
principle, RNNs can be trained by gradient-based optimization pro-
cedures (using the back-propagation algorithm [3] to compute a
gradient), but it was observed early on [1, 2] that capturing depen-
dencies that span a long interval was difficult, making the task of
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optimizing 6 to minimize the average of C;’s almost impossible for
some tasks when the span of the dependencies of interest increases
sufficiently. More precisely, using a local numerical optimization
such as stochastic gradient descent or second order methods (which
gradually improve the solution), the proportion of trials (differing
only from their random initialization) falling into the basin of at-
traction of a good enough solution quickly becomes very small as
the temporal span of dependencies is increased (beyond tens or
hundreds of steps, depending of the task).

These difficulties are probably responsible for the major reduc-
tion in research efforts in the area of RNNs in the 90’s and 2000’s.
However, a revival of interest in these learning algorithms is taking
place, in particular thanks to [4] and [5]. This paper studies the is-
sues giving rise to these difficulties and discusses, reviews, and com-
bines several techniques that have been proposed in order to improve
training of RNNs, following up on a recent thesis devoted to the sub-
ject [6]. We find that these techniques generally help generalization
performance as well as training performance, which suggest they
help to improve the optimization of the training criterion. We also
find that although these techniques can be applied in the online set-
ting, i.e., as add-ons to stochastic gradient descent (SGD), they allow
to compete with batch (or large minibatch) second-order methods
such as Hessian-Free optimization, recently found to greatly help
training of RNNs [4].

2. LEARNING LONG-TERM DEPENDENCIES AND THE
OPTIMIZATION DIFFICULTY WITH DEEP LEARNING

There has been several breakthroughs in recent years in the algo-
rithms and results obtained with so-called deep learning algorithms
(see [7] and [8] for reviews). Deep learning algorithms discover
multiple levels of representation, typically as deep neural networks
or graphical models organized with many levels of representation-
carrying latent variables. Very little work on deep architectures
occurred before the major advances of 2006 [9, 10, 11], probably
because of optimization difficulties due to the high level of non-
linearity in deeper networks (whose output is the composition of
the non-linearity at each layer). Some experiments [12] showed the
presence of an extremely large number of apparent local minima of
the training criterion, with no two different initializations going to
the same function (i.e. eliminating the effect of permutations and
other symmetries of parametrization giving rise to the same func-
tion). Furthermore, qualitatively different initialization (e.g., using
unsupervised learning) could yield models in completely different
regions of function space. An unresolved question is whether these
difficulties are actually due to local minima or to ill-conditioning
(which makes gradient descent converge so slowly as to appear
stuck in a local minimum). Some ill-conditioning has clearly been
shown to be involved, especially for the difficult problem of training
deep auto-encoders, through comparisons [13] of stochastic gradient
descent and Hessian-free optimization (a second order optimiza-
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tion method). These optimization questions become particularly
important when trying to train very large networks on very large
datasets [14], where one realizes that a major challenge for deep
learning is the underfitting issue. Of course one can trivially overfit
by increasing capacity in the wrong places (e.g. in the output layer),
but what we are trying to achieve is learning of more powerful
representations in order to also get good generalization.

The same questions can be asked for RNNs. When the compu-
tations performed by a RNN are unfolded through time, one clearly
sees a deep neural network with shared weights (across the ’layers’,
each corresponding to a different time step), and with a cost function
that may depends on the output of intermediate layers. Hessian-free
optimization has been successfully used to considerably extend the
span of temporal dependencies that a RNN can learn [4], suggest-
ing that ill-conditioning effects are also at play in the difficulties of
training RNN.

An important aspect of these difficulties is that the gradient can
be decomposed [2, 15] into terms that involve products of Jacobians
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large), gradient descent updates can be destructive (move to poor
configuration of parameters). It is not that the gradient is wrong, it is
that gradient descent makes small but finite steps A6 yielding a AC,
whereas the gradient measures the effect of AC' when A — 0. A
much deeper discussion of this issue can be found in [15], along with
a point of view inspired by dynamical systems theory and by the ge-
ometrical aspect of the problem, having to do with the shape of the
training criterion as a function of € near those regions of exploding
gradient. In particular, it is argued that the strong non-linearity oc-
curring where gradients explode is shaped like a cliff where not just
the first but also the second derivative becomes large in the direc-
tion orthogonal to the cliff. Similarly, flatness of the cost function
occurs simultaneously on the first and second derivatives. Hence di-
viding the gradient by the second derivative in each direction (i.e.,
pre-multiplying by the inverse of some proxy for the Hessian ma-
trix) could in principle reduce the exploding and vanishing gradient
effects, as argued in [4].

oh
capture them. On the other hand, when 5

explode” (becomes

Note that this is not a sufficient condition, but a necessary one. Further
more one usually wants to operate in the regime where the leading eigenvalue
is larger than 1 but the gradients do not explode.
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3. ADVANCES IN TRAINING RECURRENT NETWORKS

3.1. Clipped Gradient

To address the exploding gradient effect, [16, 15] recently proposed
to clip gradients above a given threshold. Under the hypothesis that
the explosion occurs in very small regions (the cliffs in cost func-
tion mentioned above), most of the time this will have no effect, but
it will avoid aberrant parameter changes in those cliff regions, while
guaranteeing that the resulting updates are still in a descent direction.
The specific form of clipping used here was proposed in [15] and is
discussed there at much greater length: when the norm of the gradi-
ent vector g for a given sequence is above a threshold, the update
is done in the direction thresholdW"H. As argued in [15], this very
simple method implements a very simple form of second order opti-
mization in the sense that the second derivative is also proportionally
large in those exploding gradient regions.

3.2. Spanning Longer Time Ranges with Leaky Integration

An old idea to reduce the effect of vanishing gradients is to intro-
duce shorter paths between ¢; and 2, either via connections with
longer time delays [17] or inertia (slow-changing units) in some of
the hidden units [18, 19], or both [20]. Long-Short-Term Mem-
ory (LSTM) networks [21], which were shown to be able to han-
dle much longer range dependencies, also benefit from a linearly
self-connected memory unit with a near 1 self-weight which allows
signals (and gradients) to propagate over long time spans.

A different interpretation to this slow-changing units is that they
behave like low-pass filter and hence they can be used to focus cer-
tain units on different frequency regions of the data. The analogy
can be brought one step further by introducing band-pass filter units
[22] or by using domain specific knowledge to decide on what fre-
quency bands different units should focus. [23] shows that adding
low frequency information as an additional input to a recurrent net-
work helps improving the performance of the model.

In the experiments performed here, a subset of the units were
forced to change slowly by using the following “leaky integration”
state-to-state map: h¢; = a;hi—1,; + (1 — ;) Fi(he—1,2¢). The
standard RNN corresponds to «; = 0, while here different values
of a; were randomly sampled from (0.02, 0.2), allowing some units
to react quickly while others are forced to change slowly, but also
propagate signals and gradients further in time. Note that because
a < 1, the vanishing effect is still present (and gradients can still
explode via F'), but the time-scale of the vanishing effect can be
expanded.

3.3. Combining Recurrent Nets with a Powerful Output Proba-
bility Model

One way to reduce the underfitting of RNNS is to introduce multi-
plicative interactions in the parametrization of F', as was done suc-
cessfully in [4]. When the output predictions are multivariate, an-
other approach is to capture the high-order dependencies between
the output variables using a powerful output probability model such
as a Restricted Boltzmann Machine (RBM) [24, 25] or a determinis-
tic variant of it called NADE [26, 25]. In the experiments performed
here, we have experimented with a NADE output model for the mu-
sic data.



3.4. Sparser Gradients via Sparse OQutput Regularization and
Rectified Outputs

[7] hypothesized that one reason for the difficulty in optimizing
deep networks is that in ordinary neural networks gradients diffuse
through the layers, diffusing credit and blame through many units,
maybe making it difficult for hidden units to specialize. When
the gradient on hidden units is more sparse, one could imagine
that symmetries would be broken more easily and credit or blame
assigned less uniformly. This is what was advocated in [27], ex-
ploiting the idea of rectifier non-linearities introduced earlier in
[28], i.e., the neuron non-linearity is out = max(0,in) instead
of out = tanh(in) or out = sigmoid(in). This approach was
very successful in recent work on deep learning for object recog-
nition [29], beating by far the state-of-the-art on ImageNet (1000
classes). Here, we apply this deep learning idea to RNNs, using
an L1 penalty on outputs of hidden units to promote sparsity of
activations. The underlying hypothesis is that if the gradient is con-
centrated in a few paths (in the unfolded computation graph of the
RNN), it will reduce the vanishing gradients effect.

3.5. Simplified Nesterov Momentum

Nesterov accelerated gradient (NAG) [30] is a first-order optimiza-
tion method to improve stability and convergence of regular gradient
descent. Recently, [6] showed that NAG could be computed by the
following update rules:

v = pe—1vt—1 — €1V f(Or—1 4+ pe—1ve—1) (€]
9,5 = 015_1 + VUt (2)

where 6 are the model parameters, v; the velocity, ¢ € [0, 1] the
momentum (decay) coefficient and ¢; > 0 the learning rate at it-
eration ¢, f(6) is the objective function and V f(6) is a shorthand
notation for the gradient Bfff) lg—o’. These equations have a form
similar to standard momentum updates:

U = pe—1V¢—1 — €1V f(0—1) 3)
0y =0;—1+v; “)
=0;1+ pr—1vi—1 — -1V f(0:—1) (©)

and differ only in the evaluation point of the gradient at each itera-
tion. This important difference, thought to counterbalance too high
velocities by “peeking ahead” actual objective values in the candi-
date search direction, results in significantly improved RNN perfor-
mance on a number of tasks.

In this section, we derive a new formulation of Nesterov mo-
mentum differing from (3) and (5) only in the linear combination
coefficients of the velocity and gradient contributions at each itera-
tion, and we offer an alternative interpretation of the method. The
key departure from (1) and (2) resides in committing to the “peeked-
ahead” parameters ©;_1 = 0:—1 + pt—1v:—1 and backtracking by
the same amount before each update. Our new parameters ©; up-
dates become:

v = pe—1v—1 — €1V f(Or—1) (6)

Or =041 — ple—1Vt—1 + pvr + vy
=01+ pepe—1ve-1 — (1 + pe)ee—1VF(©r—1) (1)
Assuming a zero initial velocity v1 = 0 and velocity at convergence

of optimization v =~ 0, the parameters © are a completely equiva-
lent replacement of 6.
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Note that equation (7) is identical to regular momentum (5)
with different linear combination coefficients. More precisely, for an
equivalent velocity update (6), the velocity contribution to the new
parameters pipi—1 < pur is reduced relatively to the gradient con-
tribution (1 + p¢)er—1 > €.—1. This allows storing past velocities
for a longer time with a higher ., while actually using those veloci-
ties more conservatively during the updates. We suspect this mecha-
nism is a crucial ingredient for good empirical performance. While
the “peeking ahead” point of view suggests that a similar strategy
could be adapted for regular gradient descent (misleadingly, because
it would amount to a reduced learning rate €;), our derivation shows
why it is important to choose search directions aligned with the cur-
rent velocity to yield substantial improvement. The general case is
also simpler to implement.

4. EXPERIMENTS

In the experimental section we compare vanilla SGD versus SGD
plus some of the enhancements discussed above. Specifically we
use the letter ‘C* to indicate that gradient clipping is used, ‘L* for
leaky-integration units, ‘R* if we use rectifier units with L1 penalty
and ‘M* for Nesterov momentum.

4.1. Music Data

We evaluate our models on the four polyphonic music datasets of
varying complexity used in [25]: classical piano music (Piano-
midi.de), folk tunes with chords instantiated from ABC nota-
tion (Nottingham), orchestral music (MuseData) and the four-part
chorales by J.S. Bach (JSB chorales). The symbolic sequences con-
tain high-level pitch and timing information in the form of a binary
matrix, or piano-roll, specifying precisely which notes occur at each
time-step. They form interesting benchmarks for RNNs because of
their high dimensionality and the complex temporal dependencies
involved at different time scales. Each dataset contains at least 7
hours of polyphonic music with an average polyphony (number of
simultaneous notes) of 3.9.

Piano-rolls were prepared by aligning each time-step (88 pitch
labels that cover the whole range of piano) on an integer fraction
of the beat (quarter note) and transposing each sequence in a com-
mon tonality (C major/minor) to facilitate learning. Source files and
preprocessed piano-rolls split in train, validation and test sets are
available on the authors” website?.

4.1.1. Setup and Results

We select hyperparameters, such as the number of hidden units n,,
regularization coefficients Az 1, the choice of non-linearity function,
or the momentum schedule p;, learning rate €;, number of leaky
units nyeqky Or leaky factors o according to log-likelihood on a val-
idation set and we report the final performance on the test set for the
best choice in each category. We do so by using random search [31]
on the following intervals:

nn € [100, 400]
pe € [1072,0.95]
Nieaky € {0(%)7 25%, 50%}

€ € [1074,1071]
A1 € 10761077
a € [0.02,2]

The cutoff threshold for gradient clipping is set based on the
average norm of the gradient over one pass on the data, and we used
15 in this case for all music datasets. The data is split into sequences
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Table 1. Log-likelihood and expected accuracy for various RNN models in the symbolic music prediction task. The double line separates
sigmoid recognition layers (above) to structured output probability models (below).

Model Piano-midi.de Nottingham MuseData JSB chorales
LL LL ACC% LL LL ACC% LL LL ACC% LL LL ACC%
(train)  (test) (test)  (train)  (test) (test)  (train)  (test) (test)  (train)  (test) (test)
RNN (SGD) -7.10  -7.86 22.84  -349 -375 66.90  -6.93 -7.20 2797  -7.88 -8.65 29.97
RNN (SGD+C) =715 -7.59 22.98 -3.40 -3.67 67.47 -6.79  -7.04 30.53 -7.81  -8.65 29.98
RNN (SGD+CL) -7.04  -7.57 22.97 -3.31  -3.57 6797  -647 -6.99 3153  -7.78 -8.63 29.98
RNN (SGD+CLR) -6.40 -7.80 2422 299 -355 7020 -6.70 -7.34 29.06 -7.67 947 29.98
RNN (SGD+CRM) -6.92  -7.73 23.71 -3.20  -3.43 68.47 -7.01  -7.24 29.13 -8.08 -8.81 29.52
RNN (HF) -7.00 -7.58 22.93 -3.47  -3.76 66.71 -6.76  -7.12 29.77  -8.11 -8.58 29.41
RNN-RBM N/A  -7.09 28.92 N/A  -2.39 75.40 N/A  -6.01 34.02 N/A  -6.27 33.12
RNN-NADE (SGD) =723 -748 20.69 285 -2091 64.95 -6.86 -6.74 2491 -5.46 -5.83 32.11
RNN-NADE (SGD+CR) -6.70  -7.34 2122 -2.14 -251 69.80  -6.27 -6.37 26.60 -444 -533 34.52
RNN-NADE (SGD+CRM) -6.61 -7.34 2212 -2.11  -2.49 69.54  -599 -6.19 29.62 -4.26 -5.19 35.08
RNN-NADE (HF) -6.32  -7.05 2342  -1.81 -231 71.50  -5.20 -5.60 3260 491 -5.56 32.50

Table 2. Entropy (bits per character) and perplexity for various RNN models on next character and next word prediction task.

Model Penn Treebank Corpus  Penn Treebank Corpus

word level character level
perplexity  perplexity entropy entropy

(train) (test) (train) (test)
RNN (SGD) 112.11 145.16 1.78 1.76
RNN (SGD+C) 78.71 136.63 1.40 1.44
RNN (SGD+CL) 76.70 129.83 1.56 1.56
RNN (SGD+CLR) 75.45 128.35 1.45 1.49

of 100 steps over which we compute the gradient. The hidden state
is carried over from one sequence to another if they belong to the
same song, otherwise is set to 0.

Table 1 presents log-likelihood (LL) and expected frame-level
accuracy for various RNNs in the symbolic music prediction task.

Results clearly show that these enhancements allow to improve
on regular SGD in almost all cases; they also make SGD competitive
with HF for the sigmoid recognition layers RNNs.

4.2. Text Data

We use the Penn Treebank Corpus to explore both word and char-
acter prediction tasks. The data is split by using sections 0-20 as
training data (5017k characters), sections 21-22 as validation (393k
characters) and sections 23-24 as test data (442k characters).

For the word level prediction, we fix the dictionary to 10000
words, which we divide into 30 classes according to their frequency
in text (each class holding approximately 3.3% of the total number
of tokens in the training set). Such a factorization allows for faster
implementation, as we are not required to evaluate the whole output
layer (10000 units) which is the computational bottleneck, but only
the output of the corresponding class [32].

4.2.1. Setup and Results

In the case of next word prediction, we compute gradients over se-
quences of 40 steps, where we carry the hidden state from one se-
quence to another. We use a small grid-search around the parameters
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used to get state of the art results for this number of classes [32], i.e.,
with a network of 200 hidden units yielding a perplexity of 134. We
explore learning rate of 0.1,0.01,0.001, rectifier units versus sig-
moid units, cutoff threshold for the gradients of 30, 50 or none, and
no leaky units versus 50 of the units being sampled from 0.2 and
0.02.

For the character level model we compute gradients over se-
quences of 150 steps, as we assume that longer dependencies are
more crucial in this case. We use 500 hidden units and explore learn-
ing rates of 0.5, 0.1 and 0.01.

In table 2 we have entropy (bits per character) or perplexity for
varous RNNSs on the word and character prediction tasks. Again, we
observe substantial improvements in both training and test perplex-
ity, suggesting that these techniques make optimization easier.

5. CONCLUSIONS

Through our experiments we provide evidence that part of the issue
of training RNN is due to the rough error surface which can not be
easily handled by SGD. We follow an incremental set of improve-
ments to SGD, and show that in most cases they improve both the
training and test error, and allow this enhanced SGD to compete or
even improve on a second-order method which was found to work
particularly well for RNNS, i.e., Hessian-Free optimization.
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