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ABSTRACT
Today’s speech recognition technology is mature enough to be use-
ful for many practical applications. In this context, it is of paramount
importance to train accurate acoustic models for many languages
within given resource constraints such as data, processing power, and
time. Multilingual training has the potential to solve the data issue
and close the performance gap between resource-rich and resource-
scarce languages. Neural networks lend themselves naturally to pa-
rameter sharing across languages, and distributed implementations
have made it feasible to train large networks. In this paper, we
present experimental results for cross- and multi-lingual network
training of eleven Romance languages on 10k hours of data in to-
tal. The average relative gains over the monolingual baselines are
4%/2% (data-scarce/data-rich languages) for cross- and 7%/2% for
multi-lingual training. However, the additional gain from jointly
training the languages on all data comes at an increased training time
of roughly four weeks, compared to two weeks (monolingual) and
one week (crosslingual).

Index Terms— Speech recognition, parameter sharing, deep
neural networks, multilingual training, distributed neural networks

1. INTRODUCTION

Speech recognition has advanced remarkably over the last decade
and is used in a growing number of applications and services such
as Google Voice Search [1]. As a consequence, there is often the
need to efficiently train accurate acoustic models for a large number
of languages.

Traditionally, languages (and dialects) are considered indepen-
dently, and a separate acoustic model is trained for each language
from scratch. Recently, excellent results have been achieved using
Deep Neural Networks (DNNs) for acoustic modeling [2, 3, 4, 5, 6].
Potential limitations of this monolingual approach include the train-
ing cost, in particular for DNNs [2, 3, 4, 5], and the limited data
for many languages. This usually results in considerable differences
in quality between resource-rich and resource-scarce languages, for
example, because only small models with low complexity can be es-
timated for the latter. In general, data scarcity is not only a problem
of costly data collection but also an unavoidable bottleneck for lan-
guages with low traffic and new launches where it is difficult to find
large amounts of representative data.

Multitask learning is an attractive alternative to the traditional,
single-task approach described above. In this approach, multiple
tasks are learned in parallel and use a shared representation [7]. An
architecture for multilingual speech recognition is shown in Fig. 1.
In this example, the feature extraction is shared whereas there is
a separate classifier for each language. Multitask learning may be
beneficial for several reasons. For example, [8, 9] show that learning
based on knowledge transfer generalizes better. According to [7, 10],
the mechanisms that help multitask learning for DNNs include rep-
resentation bias (local optima supported by all tasks are preferred),
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Fig. 1. Example for a multilingual architecture for speech recogni-
tion with a language-independent feature extraction and language-
specific classifiers on top of it.

overfitting prevention (more reliable feature estimation, in particu-
lar for resource-scarce tasks), eavesdropping (learning some features
may be easier in a parallel task), data amplification (the extra infor-
mation of different noise added to the same feature may help), and
attribute selection (may select better features).

The contributions of this paper include an experimental evalu-
ation of the multilingual approach based on DNNs with a shared
feature extraction, as summarized in Fig. 2 (b). The multilingual
DNN includes eleven Romance languages with different types of
data, including supervised/unsupervised and read/spontaneous data,
and different amounts of training data per language dialect, ranging
from 100 hours to 1500 hours and amounting to roughly 10k hours
of data in total. For the joint training of the languages, the imple-
mentation for distributed DNNs introduced in [11, 12] is used.

Note that “resource-scarce” is relative to the model size. For the
network size used in this paper, a few hundred hours of data implies
data scarcity. In particular, our main goal is to train more accurate
networks for the given data - rather than to bootstrap a language
with little or no data from another language by using model adapta-
tion [13, 14], a tandem approach [15, 16, 17, 18, 19], a phone map-
ping [20], unsupervised pre-training [21], initialization with an ex-
isting neural network [22, 19, 23], or building a language-universal
acoustic model based on a shared phone set [24]. Also, multilingual
recognition including language identification is beyond the scope of
this paper [20]. The multilingual approach in [25] is similar to our
approach in that the phones of the different languages are kept sep-
arate and parts of the model are shared across the languages (the
states of the subspace Gaussian mixture models in case of [25]).
An overview on cross- and multi-lingual speech recognition can be
found in [26].

The remainder of the paper is organized as follows. Section 2
describes the multilingual DNN used in this paper in more detail
and compares it to existing variants. Section 3 summarizes the dis-
tributed DNN implementation from [11, 12]. The experimental eval-
uation is given in Section 4. The paper concludes with Section 5.
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Fig. 2. (a) Monolingual neural networks and (b) the corresponding multilingual neural network. Comparing with Fig. 1, the (shared) hidden
layers correspond with the feature extraction and the output layer(s) correspond with the classifier.

2. CROSS- AND MULTI-LINGUAL APPROACHES

This section describes different approaches to learning based on
knowledge transfer. Two examples for crosslingual training are fea-
ture learning (Section 2.1) and transfer learning (Section 2.2). Mul-
tilingual training is an instance of multitask learning (Section 2.3),
which is the main topic of this work.

2.1. Feature Learning
Feature learning has been used in speech recognition for discrimina-
tive features or tandem features [15, 16, 17]. In this approach, fea-
tures based on neural networks, for example, are trained using data
from one [17] or multiple [18] languages. On top of these features,
a comparably lightweight classifier (for example, Gaussian mixture
models or a neural network with only a couple of layers) is trained
for another language, keeping the features fixed (see Fig. 1). For
the model given in Fig. 2 (a), feature learning uses the weights of
the bottom three hidden layers of a source network in the target net-
works and keeps these weights fixed during training of the target
networks. This approach is efficient and can learn sophisticated fea-
tures, if there is sufficient data for the source language, while avoid-
ing overfitting for resource-scarce languages. The drawback of this
approach may be that the features and the classifier are not jointly
optimized.

2.2. Transfer Learning
Transfer learning [27] refers to the situation where the network of
a target language is initialized with an existing source network, for
example, by pre-training or fine-tuning [21, 22, 19, 23], and is not
trained from scratch. In Fig. 2 (a), this means that (some of) the
weights from a monolingual network are used to initialize the cor-
responding weights of another monolingual network. Unsupervised
pre-training [28] is similar but is expected to be less effective than
transfer learning because it does not use crosslingual data and the
training criterion does not directly optimize discrimination. Trans-
fer training may be a good choice for fast bootstrapping of neural
networks. This approach is limited because knowledge transfer is
only possible from the source to the target task and only biases the
initialization. Overfitting remains an issue, unless the hypothesis
space is reduced by using regularization (similar to model adapta-

tion [13, 14]) or keeping the bottom hidden layers fixed during train-
ing (see [15] and feature learning in Section 2.1).

2.3. Multitask Learning
In this approach, multiple tasks are learned in parallel and use a
shared representation [7, 25]. In this paper, we use an architec-
ture based on DNNs with a shared feature extraction and language-
specific classifiers, see Fig. 1 and Fig. 2 (b). In particular, the fea-
ture extraction and the classifiers are jointly optimized on the shared
data for the different languages. As a side effect, it is expected that
multitask learning is less sensitive to the optimal tuning of the net-
work size. Feature learning (Section 2.1) and transfer learning (Sec-
tion 2.2) can be considered (efficient) approximations of this imple-
mentation of multitask learning. These “approximations,” however,
only cover the mechanisms of representation bias and overfitting
prevention. Full multitask learning is required for the other mech-
anisms of eavesdropping, data amplification, and attribute selection
(see Section 1), which come at the expense of a training algorithm
with a high complexity and that is hard to parallelize.

3. DISTRIBUTED DEEP NEURAL NETWORKS

Stochastic gradient descent (SGD) [29] is the most commonly used
optimization procedure for training DNNs [2, 3, 4, 5]. Unfortunately,
the traditional formulation of SGD is inherently sequential, making
scaling networks and data sets difficult. For this reason, GPU-based
implementations for DNN training have become the standard, in or-
der to reduce the per-step training times [2, 3, 4, 5]. Instead of GPUs,
we use the software framework DistBelief proposed in [11, 12] that
supports distributed computation on multiple CPUs in DNNs. Dist-
Belief is briefly summarized in this section.

DistBelief includes two complementary types of parallelism:
distributed optimization over multiple model instances, and dis-
tributed computation within each model instance. For each model
instance, the framework distributes computation across several
machines, automatically parallelizing computation within each ma-
chine using all available cores, and managing communication, syn-
chronization and data transfer between machines.1 To distribute

1The performance benefits of distributing a deep network across multiple
machines depends on the connectivity structure and computational needs of
the model, see [10] for benchmarks.
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optimization across many such model instances, DistBelief uses
a variant of asynchronous stochastic gradient descent, Downpour
SGD.

The basic approach to Downpour SGD is as follows. We di-
vide the training data into a number of subsets and run a copy of the
model on each of these subsets. Models periodically update their
copies of the model parameters by requesting fresh values from the
parameter server. The models send updates to a centralized param-
eter server, which keeps the current state of all parameters for the
model, sharded across many machines (see Fig. 3). This approach

Fig. 3. Downpour SGD. Model replicas asynchronously fetch pa-
rameters w and push gradients w to the parameter server.

is asynchronous in two distinct aspects: the model replicas run in-
dependently of each other, and the parameter server shards also run
independently of one another. In the simplest implementation, be-
fore processing each mini-batch, a model replica asks the parameter
server service for an updated copy of its model parameters. Be-
cause DistBelief models are themselves partitioned across multiple
machines, each machine needs to communicate with just the subset
of parameter server shards that hold the model parameters relevant
to its partition. After receiving an updated copy of its parameters,
the DistBelief model replica processes a mini-batch of data to com-
pute a parameter gradient, and sends the gradient to the parameter
server, which then applies the gradient to the current value of the
model parameters. Downpour SGD is more robust to machines fail-
ures than standard (synchronous) SGD because if one machine in
a model replica fails, the other model replicas continue processing
their training data and updating the model parameters via the param-
eter servers. On the other hand, the multiple layers of asynchronous
processing in Downpour SGD introduce a great deal of additional
stochasticity in the optimization procedure. A model replica is al-
most certainly computing its gradients based on a set of parameters
that are slightly out of date because some other model replica will
likely have updated the parameters on the parameter server in the
meantime. The Adagrad [30] adaptive learning rate procedure uses
a separate, adaptive learning rate for each parameter rather than a
single, fixed learning rate on the parameter server (η in Fig. 3). The
use of Adagrad for Downpour SGD increases the maximum num-
ber of model replicas that can productively work simultaneously and
has virtually eliminated stability concerns in training DNNs. Ada-
grad usually requires “warmstarting” the model training with one or
a few model replicas before activating the other replicas.

DistBelief lends itself naturally to multitask learning as it allows
for training with a large number of (partially overlapping) model
replicas. Each task processes its data on its own set of machines. The
computed gradients are sent to the parameter server, which updates
the parameters in a consistent way and sends the updated parameters
back.

4. EXPERIMENTAL RESULTS

This section provides experimental results for multilingual training
for a set of Romance languages.

4.1. Data & Setup
The experiments are performed on the Romance languages in-
cluding Catalan, different Spanish dialects, French, Italian, two
Portuguese dialects, Romanian, and Basque (which is not a Ro-
mance language but a language isolate surrounded by Romance
languages), see Table 1. The type of training data varies between
the languages and is a realistic mix of read/spontaneous speech
and supervised/unsupervised data coming from different sources.
The amount of available training data for each language is shown
in Table 1. The test sets consist of data from Voice Search, Voice
IME such as dictation or read test data, including five hours/25000
words or more per language. The data for ca-ES, eu-ES, pt-PT, and
ro-RO are read speech whereas the remaining 95% of the data are
spontaneous speech.

The setup for DNN training and the hybrid decoding is based
on the setup in [31]. The DNN is bootstrapped from a standard
HMM-based system using discriminately trained Gaussian Mixture
Models (GMMs) without speaker adaptation. The number of Gaus-
sian densities depends on the amount of data, ranging from 33000
to 250000. The input for the DNN is eleven contiguous frames of
40-dimensional log-filterbank features. The DNN consists of four
hidden layers each with 2560 nodes and logistic activation, and
an output layer with softmax activation representing the context-
dependent states from the baseline GMM model, see Fig. 2. The
number of context-dependent states differs from language to lan-
guage and depends on the available data, see Table 1. Unsupervised
pre-training [28] is not used as it has not helped in control experi-
ments. A standard trigram language model is used for decoding. For
multilingual training, the bottom three hidden layers are shared. The
optimization of the DNNs is done in the distributed implementation
described in Section 3 using a variant of SGD. The stopping crite-
rion is early stopping (the frame accuracy on held-out data degraded
slightly after a while in almost all training runs) or when there is no
change in frame accuracy on the held-out data for a relatively long
time (on the order of a week).

4.2. Detailed Analysis for pt-PT
Next, a detailed analysis of the results is given for pt-PT, which is
considered a resource-scarce language for which the effects of cross-
and multi-lingual training are expected to be most significant.

Fig. 4 shows the word error rate over the training time for the
different initialization and training scenarios. The baseline is the
DNN trained from scratch with in-language data only (column ’from
scratch’ in Fig. 4). Transfer learning, i.e., initializing the pt-PT DNN
with a DNN of another language gives an absolute gain of 1% in
word error rate (’from en-US, all layers’). Here, we used an Ameri-
can English DNN (en-US) trained on 3000 hours of data for roughly
two weeks to guarantee consistency of the results throughout the pa-
per. DNNs of other languages, for example, pt-BR, were also tested
and give similar results. Keeping the bottom hidden layers in the
DNN fixed during training (feature learning), helps to avoid overfit-
ting (’from en-US, last 3 layers’ etc.). Compared to training from
scratch, feature and transfer learning not only give better word error
rates but also tend to converge faster.

The plot suggests that only training the last two layers (the out-
put layer and the last hidden layer) is a good operating point in terms
of word error rate, overfitting, and convergence speed. The multilin-
gual DNN shown in Fig. 2 (b) was chosen based on this observation,
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Table 1. Word error rates (%) for cross- and multi-lingual training. The format ’X / -Y%’ for DNN means word error rate/relative gain where
the relative gain is given for monolingual training over GMM and for cross-/multi- over mono-lingual training.

Monolingual Crosslingual Multilingual
Train GMM DNN
data from scratch from en-US

Language Region (hours) #States all layers top 2 layers all layers
eu-ES Basque Spain 80 1600 18.9 16.3 / -14% 16.2 / -1% 15.4 / -6%
ca-ES Catalan Spain 100 3300 25.7 22.1 / -14% 19.9 / -10%
pt-PT Portuguese Portugal 100 2900 25.7 21.8 / -15% 20.9 / -4% 21.0 / -4% 20.5 / -6%
ro-RO Romanian Romania 220 5700 16.9 12.9 / -24% 12.1 / -6% 11.7 / -9%
es-AR Spanish Argentina 270 3500 48.4 40.2 / -17% 38.8 / -3% 37.7 / -6%
es-419 Spanish Latin Amer. & Carib. 920 5500 49.5 39.7 / -20% 38.4 / -3%
fr-FR French France 1140 6200 33.7 30.7 / -9% 30.2 / -2%
pt-BR Portuguese Brazil 1450 4700 36.4 31.1 / -15% 31.1 / -0% 30.7 / -1% 30.7 / -1%
it-IT Italian Italy 1460 5100 19.4 16.0 / -18% 15.6 / -3% 15.6 / -3%
es-ES Spanish Spain 1490 4900 31.2 25.8 / -17% 25.4 / -2% 25.1 / -3%
es-MX Spanish Mexico 1490 3700 49.8 37.3 / -25% 36.8 / -1% 36.5 / -2%

i.e., the bottom three hidden layers are shared while the top hidden
layer and the output layer are language-specific.

Multilingual training gives another absolute gain of 0.5% in
word error rate over transfer learning, without overfitting. From this,
we conclude that for resource-scarce languages, the joint optimiza-
tion of the feature extraction and the classifiers on all data helps in
addition to the better initialization. In terms of the mechanisms for
multitask learning (Section 1), this implies that beside representa-
tion bias and overfitting prevention (which are also active for feature
and transfer learning), eavesdropping, data amplification or attribute
selection are relevant mechanisms as well. On the downside, the
training time is significantly higher than for crosslingual training:
the number of epochs needed for convergence is roughly the same
but the time spent per epoch is significantly larger because the other
ten languages simultaneously update the shared hidden layers. To
be fair, the training times for the resource-rich languages are much
larger, say, up to one week for crosslingual and up to two weeks
for monolingual training. More recent, internal experiments suggest
that the training time of multilingual DNN can be reduced consider-
ably by a better initialization scheme (for example, train the DNNs
for each language separately with feature learning first).

4.3. Multilingual Network for Romance Languages
Table 1 summarizes the word error rates for all eleven Romance
languages. This table includes results for the GMM baseline and
different variants of DNNs for comparison. First, the DNNs (’DNN,
from scratch’) outperform the GMMs (’GMM’). Across the differ-
ent languages and conditions, the DNNs reduce the word error rate
by 10%-25% relatively. Second, cross- and multi-lingual training
(’DNN, from en-US’ and ’DNN, multilingual’) consistently yield
better word error rates than monolingual training (’DNN, from
scratch’). For the resource-scarce languages, overfitting is a severe
issue for mono- and cross-lingual training. For this reason, only the
last two layers are updated in crosslingual training in this case (’last
2 layers’ vs. ’all layers’). In general, early stopping is essential for
mono- and cross-lingual training to obtain competitive error rates.
Finally, multilingual training (’DNN, multilingual’) often gives an
additional gain over crosslingual training (’DNN, from en-US’), in
particular for the resource-scarce languages with only a few hundred
hours of data.

In summary, the conclusions from Section 4.2 for the resource-
scarce language pt-PT carry over to all Romance languages, al-

though the effect of multitask learning tends to be the less pro-
nounced the more training data there is.

5. SUMMARY

We presented an empirical comparison of mono-, cross-, and multi-
lingual acoustic model training using deep neural networks. Experi-
ments were performed for eleven Romance languages with a total
amount of 10k hours of data. This large-scale experiment is en-
abled by a highly distributed software framework for deep neural
networks. Our results for crosslingual training support the findings
by other groups at smaller scale that crosslingual training outper-
forms monolingual training (up to 6% relative gain in word error
rate). Furthermore, it was shown that multilingual training can give
an additional gain on top of crosslingual training, which tends to be
larger the smaller the amount of data is (up to 5% relative gain). This
suggests that joint optimization of the languages on the shared data
can be beneficial, in addition to using discriminative features trained
on a single language and improved model initialization, although
at the cost of considerably increased training times. In the future,
we will try to train larger multilingual networks to better exploit the
available data.
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[27] D. Cireşan, U. Meier, and J. Schmidhuber, “Transfer learning
for Latin and Chinese characters with deep neural networks,”
in International Joint Conference on Neural Networks, 2012,
pp. 1–6.

[28] G. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural Computation, vol. 18, no.
7, pp. 1527–1554, 2006.

[29] L. Bottou, “Stochastic gradient learning in neural networks,”
in Neuro-Nı̂mes, 1991.

[30] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,” Jour-
nal of Machine Learning Research, vol. 12, pp. 2121–2159,
2011.

[31] N. Jaitly, P. Nguyen, A. Senior, and V. Vanhoucke, “Appli-
cation of pretrained deep neural networks to large vocabulary
speech recognition,” in INTERSPEECH, 2012.

8623


