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ABSTRACT
Convolutional Neural Networks (CNNs) are an alternative type of
neural network that can be used to reduce spectral variations and
model spectral correlations which exist in signals. Since speech
signals exhibit both of these properties, CNNs are a more effective
model for speech compared to Deep Neural Networks (DNNs). In
this paper, we explore applying CNNs to large vocabulary speech
tasks. First, we determine the appropriate architecture to make
CNNs effective compared to DNNs for LVCSR tasks. Specifically,
we focus on how many convolutional layers are needed, what is the
optimal number of hidden units, what is the best pooling strategy,
and the best input feature type for CNNs. We then explore the be-
havior of neural network features extracted from CNNs on a vari-
ety of LVCSR tasks, comparing CNNs to DNNs and GMMs. We
find that CNNs offer between a 13-30% relative improvement over
GMMs, and a 4-12% relative improvement over DNNs, on a 400-hr
Broadcast News and 300-hr Switchboard task.

Index Terms— Neural Networks, Speech Recognition

1. INTRODUCTION

Recently, Deep Neural Networks (DNNs) have achieved tremen-
dous success for large vocabulary continuous speech recognition
(LVCSR) tasks, showing significant gains over state-of-the-art Gaus-
sian Mixture Model/Hidden Markov Model (GMM/HMM) systems
on a wide variety of small and large vocabulary tasks [1, 2, 3, 4, 5].
Convolutional Neural Networks (CNNs) [6, 7] are an alternative type
of neural network that can be used to model spatial and temporal cor-
relation, while reducing translational variance in signals.

CNNs are attractive compared to fully-connected DNNs that
have been used extensively as acoustic models for a variety of rea-
sons. First, DNNs are not explicitly designed to model transla-
tional variance within speech signals, which can exist due to dif-
ferent speaking styles [6]. This requires us to apply various speaker
adaptation techniques to reduce feature variation. While DNNs of
sufficient size could indeed capture translational invariance, this re-
quires large networks with lots of training examples. CNNs on the
other hand capture translational invariance with far fewer parameters
by replicating weights across time and frequency. Second, DNNs
ignore input topology, as the input can be presented in any (fixed)
order without affecting the performance of the network [6]. How-
ever, spectral representations of speech have strong correlations, and
modeling local correlations with CNNs has been shown to be bene-
ficial in other fields [8].

In fact, CNNs have been heavily explored in the image recogni-
tion and computer vision fields, offering improvements over DNNs
on many tasks [8], [9]. Recently, CNNs have been explored for
speech recognition [10], also showing improvements over DNNs,

however on a small vocabulary tasks with shallow networks. While
[10] introduced a novel framework to model spectral correlations,
one of the limitations of this spectral modeling approach was that the
network was limited to one convolutional layer, unlike most CNN
work which uses multiple convolutional layers [8]. In this paper, we
explore spatial modeling similar to that done in the image recogni-
tion community, which allows for multiple convolutional layers and
encourages deeper networks.

The first part of this paper explores the appropriate architec-
ture for CNNs on LVCSR tasks. Specifically, we investigate how
many convolutional vs. fully connected layers are needed, the opti-
mal number of hidden units per layer, the optimal pooling strategy
and the best type of input feature to be used with CNN.

Given this analysis, we then explore using CNNs on a 50-hr
English Broadcast News (BN) task, in both hybrid [1, 5, 11] and
neural network feature-based [12] setups. Naturally, our best pre-
trained DNN system offers a 14% relative improvement over the
GMM/HMM, consistent with gains observed in the literature with
DNNs vs. GMM/HMMs [2]. Comparing DNNs to CNNs, we find
that a CNN hybrid system offers a 4% relative improvement over
the hybrid DNN, and the CNN-based features offer a 7% relative
improvement over the hybrid DNN. Given that we obtain the best
performance with CNN-based features, we then explore using CNN-
based features on two larger scale tasks - namely a 300-hr Switch-
board task where the CNN offers between a 4-7% relative improve-
ment over the DNN, and a 400-hr BN task where the CNN offers
between a 10-12% relative improvement over the DNN.

The rest of this paper is organized as follows. Exploration of
the appropriate CNN architecture for LVCSR tasks is described in
Section 2. Initial results using the proposed CNN architecture on
50-hr BN are presented in Section 3, while results on larger tasks are
described in Section 4. Finally, Section 5 concludes the paper.

2. CNN ARCHITECTURE

In this section, we describe CNNs in more detail and highlight exper-
iments performed to learn the optimal CNN architecture for LVCSR.

2.1. CNN Description

A typical convolutional network architecture is shown in Figure 1.
In a fully-connected network like DNNs, each hidden activation hi

is computed by multiplying the entire input V by weights W in that
layer. However, in a CNN, each hidden activation is computed by
multiplying a small local input (i.e. [v1, v2, v3]) against the weights
W. The weights W are then shared across the entire input space,
as indicated in the figure. After computing the hidden units, a max-
pooling layer helps to remove variability in the hidden units (i.e.
convolutional band activations), that exist due to speaking styles,
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channel distortions, etc. Specifically, each max-pooling unit receives
activations from r convolutional bands, and outputs the maximum of
the activations from these bands. Most CNN work in image recogni-
tion has the lower network layers be convolutional, while the higher
network layers are fully connected. In this section, we will explore
how many convolutional vs. fully connected layers are needed, what
is the optimal number of hidden units per layer, what is the best
pooling strategy, and the best input feature type for CNNs.

Fig. 1. Diagram showing a typical convolutional network architec-
ture consisting of a convolutional and max-pooling layer. In this dia-
gram, weights with the same line style are shared across all convolu-
tional layer bands. Note this figure shows non-overlapping pooling,
which is different than [10].

2.2. Experimental Setup

We perform preliminary experiments to learn the behavior of CNNs
for speech on a 50-hr English Broadcast News task [2]. The acoustic
models are trained on 50 hours of data from the 1996 and 1997 En-
glish Broadcast News Speech Corpora. Results are reported on the
EARS dev04f set. Unless otherwise indicated, we use 40 dimen-
sional log mel-filterbank coefficients, which exhibit local structure,
to train the CNNs. The CNNs and fully-connected DNNs use 1,024
hidden units per each fully connected layer, and 512 output targets.

Following a recipe similar to [11], during fine-tuning, after one
pass through the data, loss is measured on a held-out set and the
learning rate is reduced by a factor of 2 if the held-out loss has not
improved sufficiently over the previous iteration. Training stops after
we have reduced the step size 5 times. All DNNs and CNNs are
trained with cross-entropy, and results are reported in a hybrid setup.

2.3. Number of Convolutional vs. Fully Connected Layers

Most CNN work in image recognition makes use of a few convolu-
tional layers before having fully connected layers. The convolutional
layers are meant to reduce spectral variation and model spectral cor-
relation, while the fully connected layers aggregate the local infor-
mation learned in the convolutional layers to do class discrimination.
However, the CNN work done thus far in speech [10] introduced a
novel framework for modeling spectral correlations, but this frame-
work only allowed for a single convolutional layer. We adopt a spa-
tial modeling approach similar to the image recognition work, and
explore the benefit of including multiple convolutional layers.

Table 1 shows the WER as a function of the number of con-
volutional and fully connected layers in the network. Note that for

each experiment, the number of parameters in the network is kept the
same. The table shows that increasing the number of convolutional
layers up to 2 helps, and then performance starts to deteriorate. Fur-
thermore, we can see from the table that CNNs offer improvements
over DNNs for the same input feature set.

# of Convolutional vs. WER
Fully Connected Layers
No conv, 6 full (DNN) 24.8

1 conv, 5 full 23.5
2 conv, 4 full 22.1
3 conv, 3 full 22.4

Table 1. WER as a Function of # of Convolutional Layers

2.4. Number of Hidden Units

CNNs explored for image recognition tasks perform weight shar-
ing across all pixels. Unlike images, the local behavior of speech
features in low frequency is very different than features in high fre-
quency regions. [10] addresses this issue by limiting weight shar-
ing to frequency components that are close to each other. In other
words, low and high frequency components have different weights
(i.e. filters). However, this type of approach limits adding additional
convolutional layers [10], as filter outputs in different pooling bands
are not related. We argue that we can apply weight sharing across all
time and frequency components, by using a large number of hidden
units compared to vision tasks in the convolutional layers to capture
the differences between low and high frequency components. This
type of approach allows for multiple convolutional layers, something
that has thus far not been explored before in speech.

Table 2 shows the WER as a function of number of hidden units
for the convolutional layers. Again the total number of parameters
in the network is kept constant for all experiments. We can observe
that as we increase the number of hidden units up to 220, the WER
steadily decreases. We do not increase the number of hidden units
past 220 as this would require us to reduce the number of hidden
units in the fully connected layers to be less than 1,024 in order to
keep the total number of network parameters constant. We have ob-
served that reducing the number of hidden units from 1,024 results in
an increase in WER. We were able to obtain a slight improvement by
using 128 hidden units for the first convolutional layer, and 256 for
the second layer. This is more hidden units in the convolutional lay-
ers than are typically used for vision tasks [6], [8], as many hidden
units are needed to capture the locality differences between different
frequency regions in speech.

Number of Hidden Units WER
64 24.1

128 23.0
220 22.1

128/256 21.9

Table 2. WER as a function of # of hidden units

2.5. Optimal Feature Set

Convolutional neural networks require features which are locally
correlated in time and frequency. This implies that Linear Discrim-
inant Analysis (LDA) features, which are very commonly used in
speech, cannot be used with CNNs as they remove locality in fre-
quency [10]. Mel filter-bank (FB) features are one type of speech
feature which exhibit this locality property [13]. We explore if any
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additional transformations can be applied to these features to further
improve WER. Table 3 shows the WER as a function of input feature
for CNNs. The following can be observed:

• Using VTLN-warping to help map features into a canonical
space offers improvements.

• Using fMLLR to further speaker-adapt the input does not
help. One reason could be that fMLLR assumes the data is
well modeled by a diagonal model, which would work best
with decorrelated features. However, the mel FB features are
highly correlated.

• Using delta and double-delta (d + dd) to capture further time-
dynamic information in the feature helps.

• Using energy does not provide improvements.

Feature WER
Mel FB 21.9

VTLN-warped mel FB 21.3
VTLN-warped mel FB + fMLLR 21.2
VTLN-warped mel FB + d + dd 20.7

VTLN-warped mel FB + d + dd + energy 21.0

Table 3. WER as a function of input feature
In conclusion, it appears VTLN-warped mel FB + d+dd is the

optimal input feature set to use. This feature set is used for the re-
mainder of the experiments, unless otherwise noted.

2.6. Pooling Experiments

Pooling is an important concept in CNNs which helps to reduce
spectral variance in the input features. Similar to [10], we explore
pooling in frequency only and not time, as this was shown to be op-
timal for speech. Because pooling can be dependent on the input
sampling rate and speaking style, we compare the best pooling size
for two different 50 hr tasks with different characteristics, namely
8kHZ speech - Switchboard Telephone Conversations (SWB) and
16kHz speech, English Broadcast News (BN). Table 4 indicates that
not only is pooling essential for CNNs, for all tasks pooling=3 is the
optimal pooling size. Note that we did not run the experiment with
no pooling for BN, as it was already shown to not help for SWB.

WER-SWB WER- BN
No pooling 23.7 -

pool=2 23.4 20.7
pool=3 22.9 20.7
pool=4 22.9 21.4

Table 4. WER vs. pooling

3. RESULTS WITH PROPOSED ARCHITECTURE

In this section, we explore using the proposed CNN architecture
from Section 2 in both a hybrid [11] and neural network-based fea-
ture [12] setup, and compare them to two state-of-the art techniques
used for LVCSR tasks, namely generatively pre-trained DNNs and
GMM/HMMs. Our experiments are conducted on the same 50-hr
English Broadcast News (BN) task used in Section 2, and results
reported on both the EARS dev04f and rt04 sets, used for devel-
opment and testing respectively.

3.1. Experimental Setup

The GMM system is trained using our standard recipe [14], which
is briefly described below. The raw acoustic features are 13-
dimensional MFCC features with speaker-based mean, variance, and
vocal tract length normalization (VTLN). Temporal context is in-
cluded by splicing 9 successive frames of MFCC features into su-
pervectors, then projecting to 40 dimensions using LDA. Next, a
set of feature-space speaker-adapted (FSA) features are created us-
ing feature-space maximum likelihood linear regression (fMLLR).
Finally, feature-space discriminative training and model-space dis-
criminative training are done using the boosted maximum mutual in-
formation (BMMI) criterion. At test time, unsupervised adaptation
using regression tree MLLR is performed. The GMMs use 2,220
quinphone states and 30K diagonal covariance Gaussians.

The hybrid DNN is trained using FSA features as input, with a
context of 9 frames around the current frame. In [11], it was ob-
served that a 5-layer DNN with 1,024 hidden units per layer and
a sixth softmax layer with 2,220 output targets was an appropriate
architecture for BN tasks. All DNNs are pre-trained generatively us-
ing the procedure outlined in [11]. During fine-tuning, the DNN is
first trained using the cross-entropy objective function, followed by
Hessian-free sequence-training [2]. The DNN-based feature system
is also trained with the same architecture, but uses 512 output targets.
A PCA is applied on top of the DNN before softmax to reduce the
dimensionality from 512 to 40 1. Using these DNN-based features,
we apply maximum-likelihood GMM training, followed by feature
and model-space discriminative training using the BMMI criterion,
and then do an MLLR at test time. The GMM acoustic model has the
same number of states and Gaussians as the baseline GMM system.

The hybrid and CNN-based feature systems are trained using the
optimal architecture and feature set from Section 2, namely VTLN-
warped mel-FB with delta + double-delta. The number of parameters
of the CNN matches that of the DNN, with the hybrid system having
2,220 output targets and the feature-based system 512 targets. No
pre-training is performed, only cross-entropy and sequence-training.

3.2. Results

Table 5 shows the performance of CNN-based feature and hybrid
systems, and compares this to DNN and GMM/HMM systems. The
table indicates that the DNN hybrid offers a 13% relative improve-
ment over the GMM/HMM, consistent with gains observed in the
literature with DNNs vs. GMM/HMMs [2]. However, the CNN
systems are far better than the DNNs. The CNN hybrid offers be-
tween a 3-5% relative improvement over this DNN hybrid, and the
CNN-based feature system offers between a 5-6% relative improve-
ment over the hybrid DNN. Given that we obtain the best perfor-
mance with CNN-based features, we explore the performance of
CNN-based features on two larger tasks in the next section.

model dev04f rt04
Baseline GMM/HMM 18.8 18.1

Hybrid DNN 16.3 15.8
DNN-based Features 16.7 16.0

Hybrid CNN 15.8 15.0
CNN-based Features 15.2 15.0

Table 5. WER for NN Hybrid and Feature-Based Systems

1Note that a PCA is used instead of an autoencoder [12] for dimension-
ality reduction because the performance of the two methods is very similar,
and PCA training is much faster
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4. RESULTS ON LARGER TASKS

In this section, we explore the performance of CNN-based features
on two larger scale tasks.

4.1. Broadcast News

4.1.1. Experimental Setup

First, we explore scalability of CNNs on 400 hours of English
Broadcast News [15]. Development is done on the DARPA EARS
dev04f set. Testing is done on the DARPA EARS rt04 evaluation
set. The raw acoustic features are 19-dimensional perceptual linear
predictive (PLP) features with speaker-based mean, variance, and
VTLN, followed by an LDA and then fMLLR. The GMMs are then
feature and model-space discriminatively trained using the BMMI
criterion. At test time, unsupervised adaptation using regression tree
MLLR is performed. The GMMs use 5,999 quinphone states and
150K diagonal-covariance Gaussians.

The generatively pre-trained DNN hybrid system use the same
fMLLR features and 5,999 quinphone states as the GMM system de-
scribed above, with a 9-frame context around the current frame, and
use five hidden layers each containing 1,024 sigmoidal units. The
DNN-based feature system is trained with 512 output targets. The
DNN training begins with greedy, layerwise, generative pre-training,
followed by cross-entropy training and then sequence training.

The CNN-based feature system is trained with VTLN-warped
mel-FB with delta + double-delta features. The first convolutional
layer has 128 hidden units, second has 256 hidden units, the three
fully connected layers have 1,024 hidden units, and the softmax layer
has 512 output targets. Again, the number of parameters of the CNN
matches that of the DNN. No pre-training is performed, only cross-
entropy and sequence-training. After 40-dimensional features are
extracted with PCA, we apply maximum-likelihood GMM training,
followed by discriminative training using the BMMI criterion, and
then do an MLLR at test time.

4.1.2. Results

Table 6 shows the performance of the CNN-based features compared
to both DNNs and GMM/HMMs. The CNN-based features offer be-
tween a 13-18% relative improvement over the GMM/HMM system,
and between a 10-12% relative improvement over the DNN-based
features. This helps to strengthen the hypothesis that CNNs are bet-
ter than DNNs for speech tasks.

model dev04f rt04
Baseline GMM/HMM 16.0 13.8

Hybrid DNN 15.1 13.4
DNN-based Features 14.9 13.3
CNN-based Features 13.1 12.0

Table 6. WER on Broadcast News, 400 hrs

4.2. Switchboard

4.2.1. Experimental Setup

Second, we explore CNNs performance on 300 hours of conversa-
tional American English telephony data from the Switchboard cor-
pus. Development is done on the Hub5’00 set, while testing is
done on the rt03 set, where we report performance separately on
the Switchboard (SWB) and Fisher (FSH) portions of the set.

The GMM systems are trained using the same methods used for
Broadcast News, namely using speaker-adaptation with VTLN and
fMLLR, followed by feature and model-space discriminative train-
ing with the BMMI criterion. Results are reported after MLLR.
The GMMs use 8,260 quinphone states and 372K Gaussians. Sim-
ilar to the Switchboard experiments in [2], the pre-trained DNN
hybrid system use the same fMLLR features and 8,260 states as
the GMM system described above, with an 11-frame context (±5)
around the current frame, and use six hidden layers each contain-
ing 2,048 sigmoidal units. The DNN hybrid system is pre-trained,
followed by cross-entropy and sequence-training. The CNN-based
feature system is trained with VTLN-warped mel-FB features. Two
convolutional layers have 424 hidden units, four fully connected
layers have 2,048 hidden units, and the softmax layer has 512 out-
put targets. Again, the number of parameters of the CNN matches
that of the DNN. No pre-training is performed, only cross-entropy
and sequence-training. Again, after 40-dimensional features are ex-
tracted with PCA, GMM ML training is done followed by discrimi-
native training, and then MLLR at test time.

4.2.2. Results

Table 7 shows the performance of the CNN-based features compared
to both DNNs and GMM/HMMs. Note that we only include results
for a Hybrid DNN. Using speaker-independent LDA features, we
found on SWB that the hybrid DNN and DNN-based features had the
same performance, roughly 13.3% on Hub5’00. In addition, from
the BN results in Table 6, we see that the hybrid and DNN-based
features have similar performance. We take these results to justify
using the Hybrid DNN model as a strong and acceptable baseline.
The CNN-based features offer between a 13-33% relative improve-
ment over the GMM/HMM system, and between a 4-7% relative
improvement over the hybrid DNN. Again, this confirms that across
a wide variety of LVCSR tasks, CNNs are better than DNNs.

Hub5’00 rt03
model SWB FSH SWB
Baseline GMM/HMM 14.5 17.0 25.2
Hybrid DNN 12.2 14.9 23.5
CNN-based Features 11.5 14.3 21.9

Table 7. WER on Switchboard, 300 hrs

5. CONCLUSIONS

In this paper, we explored how to make CNNs a more powerful
model for speech tasks compared to DNN. Specifically, we empiri-
cally determined that having 2 convolutional and 4 fully connected
layers and using a pooling strategy of 3 is optimal for CNNs. In ad-
dition, we found that the best locally correlated feature set for CNNs
is vtln-warped mel-FB with delta+double-delta. We then explored
the behavior of neural network features extracted from CNNs on a
400-hr BN and 300-hr SWB task, showing that CNNs offer between
a 13-30% relative improvement over GMMs, and a 4-12% relative
improvement over DNNs.
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