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ABSTRACT

Recently, pre-trained deep neural networks (DNNs) have
outperformed traditional acoustic models based on Gaussian
mixture models (GMMs) on a variety of large vocabulary
speech recognition benchmarks. Deep neural nets have also
achieved excellent results on various computer vision tasks
using a random “dropout” procedure that drastically improves
generalization error by randomly omitting a fraction of the
hidden units in all layers. Since dropout helps avoid over-
fitting, it has also been successful on a small-scale phone
recognition task using larger neural nets. However, training
deep neural net acoustic models for large vocabulary speech
recognition takes a very long time and dropout is likely to
only increase training time. Neural networks with rectified
linear unit (ReLU) non-linearities have been highly success-
ful for computer vision tasks and proved faster to train than
standard sigmoid units, sometimes also improving discrim-
inative performance. In this work, we show on a 50-hour
English Broadcast News task that modified deep neural net-
works using ReLUs trained with dropout during frame level
training provide an 4.2% relative improvement over a DNN
trained with sigmoid units, and a 14.4% relative improvement
over a strong GMM/HMM system. We were able to obtain
our results with minimal human hyper-parameter tuning using
publicly available Bayesian optimization code.

Index Terms— neural networks, deep learning, dropout,
acoustic modeling, broadcast news, LVCSR, rectified linear
units, Bayesian optimization

1. INTRODUCTION

Up until a few years ago, most state of the art speech recogni-
tion systems were based on hidden Markov models (HMMs)
that used mixtures of Gaussians to model the HMM emission
distributions. However, [1] showed that hybrid acoustic mod-
els that replaced Gaussian mixture models (GMMs) with pre-
trained, deep neural networks (DNNs) could drastically im-
prove performance on a small-scale phone recognition task,
results that were later extended to a large vocabulary voice
search task in [2]. Since then, several groups have demon-
strated dramatic gains from using deep neural network acous-

tic models on large vocabulary continuous speech recognition
(LVCSR) tasks (see [3] for a recent review).

Even with unsupervised pre-training and large training
sets, wide and deep neural networks are still vulnerable to
overfitting. Dropout is a technique for avoiding overfitting in
neural networks that has been highly effective on non-speech
tasks and the small-scale TIMIT phone recognition task [4],
although it can increase training time. Rectified linear units
(ReLUs) in our experience achieve the same training error
faster (as [5] also found) than sigmoid units and, although
sometimes superior to sigmoid units, can often overfit more
easily. Rectified linear units are thus a natural choice to com-
bine with dropout for LVCSR.

In this paper, we explore the behavior of deep neural nets
using ReLUs and dropout on a 50-hour broadcast news (BN)
task [6], focussing our experiments on using dropout dur-
ing the frame level training phase. We show that the modi-
fied deep neural networks (DNNs) using ReLUs and dropout
provide a 4.2% relative error reduction over a standard pre-
trained DNN and a 14.4% relative improvement over a strong
GMM-HMM system.

The rest of this paper is organized as follows. In Section 2,
we describe the dropout method, while in Section 3 Rectified
Linear units (ReLU) are presented. Experiments and results
are presented in Section 4. Finally, Section 5 concludes the
paper and discusses future work.

2. DROPOUT

Dropout is a powerful technique introduced in [4] for improv-
ing the generalization error of large neural networks. In [5],
dropout yielded gains on a highly competitive computer vi-
sion benchmark. Although [4] applied dropout to the 3 hour
TIMIT phone recognition task, we are not aware of any appli-
cation of dropout to LVSR.

Dropout discourages brittle co-adaptations of hidden unit
feature detectors by adding a particular type of noise to the
hidden unit activations during the forward pass of train-
ing. The noise zeros, or “drops out,” a fixed fraction of the
activations of the neurons in a given layer, similar to the
type of noise recommended for the input of denoising auto-
encoders in [7]. However, unlike in denoising autoencoder
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pre-training, dropout is used in all hidden and input layers
and occurs during supervised training with end-to-end back-
propagation. Furthermore, since at test time dropout does
not occur and there may not be additional training with it
disabled, we multiply the net input from the layer below by a
factor of 1

1−r , where r is the dropout probability for units in
the layer below. Specifically, to compute the activation yt of
the tth layer of the net during forward propagation, we use:

yt = f

(
1

1− r
yt−1 ∗mW + b

)
,

where f is the activation function for the tth layer, W and b
are respectively the weights and biases for the layer, ∗ denotes
element-wise multiplication, and m is a binary mask with en-
tries drawn i.i.d. from Bernoulli(1 − r) indicating which ac-
tivations are not dropped out. Dropout can also be viewed
as training a very large number of different neural nets with
different connectivity patterns and tied weights for all units
that are not dropped out. By randomly sampling which units
remain anew for each training case, this averaging can be per-
formed in a particularly efficient way. The factor of 1

1−r used
during training ensures that at test time, when all units get
used, the correct total input will reach each layer.

Although dropout guards against overfitting and produces
far more robust models, adding so much noise during training
slows down learning, in our experience by about a factor of
two. Since overfitting is much easier to avoid, larger models
should be used to obtain the best results which also can slow
down training although it enables better results.

3. RECTIFIED LINEAR UNITS

In this paper we use the term rectified linear unit (ReLU) to
refer to unit in a neural net that use the activation function
max(0, x). In computer vision research, ReLUs have been
used both as activation functions in more standard neural nets
and as units in restricted Boltzmann machines (RBMs), where
they must be dealt with using approximations since they in-
validate the probabilistic model [8, 9, 5]. To our knowledge,
the only use of these units in speech to date was in [10] where
Gaussian-ReLU RBMs were used to learn features from raw,
unlabeled acoustic data to later use in phone recognition ex-
periments on TIMIT. Our work differs from [10] in that our
focus is on LVSR, we exploit the synergistic effects of com-
bining ReLUs with dropout, and we experiment with ReLUs
at all hidden layers in our network instead of only using them
as part of a stand-alone RBM feature extraction module.

Although ReLUs are quite simple to incorporate into a
standard feed-forward neural net, in order to maintain the
RBM probabilistic model we can view a single unit with the
max(0, x) nonlinearity as an approximation to a set of repli-
cated binary units with tied weights and shifted biases [9].
As in [9], we perform RBM pre-training with ReLU units
by adding Gaussian noise with sigmoid variance (called an

NReLU unit in [9]). In other words, during pre-training we
sample a hidden unit state y = max(0, x + ε), where x is
the net input to the hidden unit and ε is drawn from a nor-
mal distribution with mean zero and variance 1

1+e−x . During
fine-tuning, we simply use the max(0, x) nonlinearity.

4. EXPERIMENTS

4.1. Baseline

We performed all experiments on 50 hours of English Broad-
cast News [6]. We used the DARPA EARS rt03 set for
development/validation and performed final testing on the
DARPA EARS dev04f evaluation set.

The GMM system is trained using the recipe from [11],
which is briefly described below. The raw acoustic features
are 19-dimensional PLP features with speaker-based mean,
variance, and vocal tract length normalization. Temporal
context is included by splicing 9 successive frames of PLP
features into supervectors, then projecting to 40 dimensions
using linear discriminant analysis (LDA). The feature space
is further diagonalized using a global semi-tied covariance
(STC) transform. The GMMs are speaker-adaptively trained,
with a feature-space maximum likelihood linear (fMLLR)
transform estimated per speaker in training and testing. Fol-
lowing maximum-likelihood training of the GMMs, feature-
space discriminative training (fBMMI) and model-space dis-
criminative training are done using the boosted maximum
mutual information (BMMI) criterion. At test time, unsuper-
vised adaptation using regression tree MLLR is performed.
The GMMs use 2,203 quinphone states and 150K diagonal-
covariance Gaussians.

The pre-trained deep neural net (DNN) systems use the
same fMLLR features and 2,203 quinphone states as the
GMM system described above, with an 11-frame context
(±5) around the current frame. The DNN consists of six
hidden layers, each containing 1,024 sigmoidal units, and a
softmax layer with 2,203 output targets. These features and
DNN architecture were considered optimal in [12] for this
Broadcast News task. The DNN training begins with greedy,
layerwise, generative pre-training and then continues with
cross-entropy discriminative training, followed by Hessian-
free sequence-training [6]. To enable fair comparisons with
the large nets we tried in this work, we also trained versions
of the DNN baseline with 2048 and 3072 hidden units per
layer, with 2048 units producing the best results for the basic
pre-trained deep neural net setup.

4.2. Interactions Between Hessian Free Optimization and
Dropout

Although dropout is trivial to incorporate into minibatched
stochastic gradient descent (SGD), the best way of adding it
to 2nd order optimization methods is an open research ques-
tion. Although all frame level training we performed used
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minibatched stochastic gradient descent, we decided to use
the Hessian-free optimizer (HF) of [6] for all full sequence
training in this work since it has large parallelization advan-
tages over the SGD sequence training system we had avail-
able. However, one consequence of this choice is the undesir-
able interaction between dropout and HF. To find each search
direction, HF uses the conjugate gradient (CG) algorithm to
iteratively optimizes a local quadratic approximation to the
objective function. CG depends on having reliable curvature
and gradient information computed from large batches since
it makes such strong use of it. Having a single fixed objective
function during CG is even more important than the accuracy
of the estimates. Dropout adds too much noise to the gradient
for CG to function properly if the randomization occurs anew
on each gradient evaluation. However, we do not yet know
the best times to refresh the dropout pattern during HF so we
simply disabled dropout during full sequence training.

4.3. Bayesian Optimization and Training Details

We used the Bayesian optimization method described in [13]
to optimize training metaparameters and model hyperparame-
ters on the validation set. Bayesian optimization is a gradient-
free global optimization method that in the case of Snoek et al.
models the unknown function from hyperparameters to vali-
dation word error rate as being drawn from a Gaussian pro-
cess prior. As experiments complete, the algorithm updates
the posterior distribution for the function and proposes new
experiments to run that optimize the integrated (over Gaus-
sian process covariance function hyperparameters) expected
improvement below the current minimum error achieved by
any experiment so far. We used public code released by the
authors of [13] and enabled a constraint finding option to deal
with divergent training runs. The constrained Bayesian op-
timization version has a separate Gaussian process model to
classify points as feasible or not and combines this model with
the Gaussian process regression model when suggesting new
jobs.

All frame level training used the cross entropy crite-
rion and minibatched stochastic gradient descent. Frame
level training used gnumpy [14] and CUDAMat [15] to
train using a GPU. We allowed Bayesian optimization to
set twelve hyperparameters for frame level supervised train-
ing: seven dropout rates r0 . . . r6 (one per non-output layer
with 0 ≤ ri ≤ 0.5), a single global initial learning rate
α ∈ [4 × 10−4, 4 × 10−1], a single global momentum
µ ∈ [0, 0.95], a number of times to anneal the learning
rate before stopping a ∈ [3, 11], a minimum improvement
m ∈ [0, 0.025] in validation cross entropy required to not
anneal the learning rate, and a factor γ to divide the learn-
ing rates by when annealing them. We optimized log2 γ on
[0.5, 2.5]. Every half-epoch we computed validation cross en-
tropy and tested to see if the learning rates should be annealed
according to the schedule.

Since we did not rerun pre-training for each Bayesian op-
timization job, we set the pre-training metapamaters by hand.
Training ReLU RBMs with CD1 can be more difficult than
training Binary RBMs. We found it useful to only do 2.5
epochs of pre-training for each layer compared to more than
twice that for sigmoid units.

The Bayesian optimization software we used is suffi-
ciently effective to remove most of the human judgement
from hyperparameter optimization. When there are only
a few hyperparameters, it isn’t hard to select reasonable
values by hand, but optimizing more hyperparameters fa-
cilitates fairer comparisons between established models that
researchers have experience tuning and new models they have
less intuition about. However, there are still two areas that
require human intervention: defining the search space and
deciding when to terminate Bayesian optimization. Addition-
ally, Bayesian optimization can be accelerated by seeding the
optimization with jobs with hyperparameters selected using
results from related hyperparameter search problems. For
example, if one trains a neural net with a thousand units per
hidden layer and finds good settings for its hyperparameters,
these settings can initialize a Bayesian optimization run that
searches for hyperparameters for a related network using two
thousand hidden units per layer. We selected seed jobs for
our larger nets based on hyperparameter optimizations for
smaller networks.

4.4. Results

Table 1 shows word error rate results on the development (val-
idation) set and test set before full sequence training was per-
formed. Each model listed is the one that performed best on
the validation data given the constraints in the model descrip-
tion. As shown in the table, the single best model uses Re-
LUs, dropout, and relatively large hidden layers with weights
initialized using unsupervised RBM pre-training. This model
achieved a word error rate of 18.5 on the test set, beating other
deep neural net models and the strong discriminatively trained
GMM baseline, even before any full sequence training of the
neural net models.

To confirm that the unsupervised pre-training was worth-
while even with the approximations required for ReLU RBMs
and the smaller number of pre-training epochs used relative to
binary RBMs, we ablated the pre-training and optimized all
remaining hyperparameters. Even without pre-training, the
ReLU nets using dropout had about the same test set per-
formance as the best baseline and somewhat better perfor-
mance than the best pre-trained sigmoid nets. For the 2k unit
per hidden layer, un-pre-trained ReLU nets, we also added
additional hyperparameters (layer specific learning rates and
weight costs) and ran extensive Bayesian optimization ex-
periments to confirm that we could not find a configuration
with lower validation errors even in the larger hyperparame-
ter search space. Since these experiments alone involved over
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Model rt03 dev04f
ReLUs, 3k, dropout, CE 10.7 18.5
no PT, ReLUs, 3k, dropout, CE 11.0 18.9
no PT, ReLUs, 2k, dropout, CE 11.2 19.0
Sigmoids, 3k, CE 11.3 19.4
Sigmoids, 2k, CE 11.1 19.4
Sigmoids, 1k, CE 11.6 19.9

Table 1. Results without full sequence training (with cross
entropy a.k.a CE). All models used pre-training unless “no
PT” was specified and used 1k,2k, or 3k hidden units per
layer.

Model rt03 dev04f
GMM baseline 10.8 18.8
ReLUs, 3k, dropout, sMBR 9.6 16.1
Sigmoids, 2k, sMBR 9.6 16.8

Table 2. Results with full sequence training

5000 GPU hours of computation, they were not feasible to
perform on the nets with 3k units per layer, although for those
nets we performed our usual hyperparameter optimization in
the search space described in section 4.3.

The Bayesian optimization procedure rarely turned off
dropout for ReLU nets and typically kept dropout off for sig-
moid nets, even with 3k units per layer. This indicates that the
Bayesian optimization procedure learned that dropout wasn’t
helpful for sigmoid nets of the sizes we trained. In general,
ReLUs and dropout seem to work quite well together. With-
out dropout, ReLU nets can overfit very quickly compared to
sigmoid nets. Early stopping is often able to avoid the worst
overfitting in sigmoid nets on LVSR tasks, but for ReLU nets,
dropout combined with early stopping worked much better.

Table 2 shows results for the best ReLU net and the best
sigmoid net was trained for an equal amount of wall clock
time using 11 and 16 HF iterations of full sequence training
respectively. We trained the ReLU and sigmoid nets for an
equal amount of time to make a fair comparison in the ab-
sence of dropout during full sequence training and because of
the expense of full sequence training with nets of this size.
We expect that the very best results will necessitate the use of
dropout during full sequence training as well and we plan to
explore this in future work. The ReLU net shows a more mod-
est gain over the sigmoid net after full sequence training than
was evident after frame level training, possibly because the
ReLU net no longer gains the benefit of training with dropout
during the full sequence training. Full sequence training for
nets as large as these is very time consuming and will most
likely slow down further if HF is modified to support dropout
and especially if gradient descent sequence training gets used
instead.

5. CONCLUSIONS AND FUTURE WORK

In this paper, motivated by successes in computer vision, we
have explored using rectified linear units and dropout in deep
neural nets for LVCSR for the first time. ReLUs and dropout
yielded word error rate improvements relative to a state of
the art baseline and, with the help of Bayesian optimization
software, we were able to obtain these improvements without
much of the hand tuning typically used to obtain the very best
deep neural net results. These Bayesian optimization exper-
iments also gave us evidence that ReLUs and dropout have
synergistic effects and we recommend that they be used to-
gether. Although in our experiments we did not detect a large
gain from using dropout with sigmoid nets, on other tasks
or with other network architectures dropout might provide a
larger benefit.

Given the gains from dropout and ReLUs for frame level
training, determining the best way to exploit dropout in full
sequence training is an exciting direction for future work. At
least in principle, dropout can be used with sequence train-
ing performed with gradient descent, but there might be bet-
ter options. The dropout noise can be analytically integrated
out for single layer nets, but this is unlikely to be possible
for deeper nets without some sort of aggressive approxima-
tion. Fixing the units that are dropped out during each CG
run within HF might be sufficient to allow dropout to be com-
bined with HF, but to date all uses of dropout in the literature
have been with first order optimization algorithms. Extracting
bottleneck features [16] using deep nets trained with dropout
would obviate most of the need for sequence training of the
nets, but would abandon the goal of end-to-end training us-
ing a sequence level criterion. Nevertheless, it is a promising
alternative we hope to explore.
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