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ABSTRACT 

 
Deep learning is becoming a mainstream technology for speech 

recognition at industrial scale. In this paper, we provide an 

overview of the work by Microsoft speech researchers since 2009 

in this area, focusing on more recent advances which shed light to 

the basic capabilities and limitations of the current deep learning 

technology. We organize this overview along the feature-domain 

and model-domain dimensions according to the conventional 

approach to analyzing speech systems. Selected experimental 

results, including speech recognition and related applications such 

as spoken dialogue and language modeling, are presented to 

demonstrate and analyze the strengths and weaknesses of the 

techniques described in the paper. Potential improvement of these 

techniques and future research directions are discussed.  

 Index Terms— deep learning, neural network, multilingual, 

speech recognition, spectral features, convolution, dialogue    

 

1. INTRODUCTION 

 
For many years, speech recognition technology has been 

dominated by a “shallow” architecture using many Gaussians in 

the mixtures associated with HMM states to represent acoustic 

variability in the speech signal. Since 2009, in collaboration with 

researchers at University of Toronto and other organizations, we at 

Microsoft have developed deep learning technology that has 

successfully replaced Gaussian mixtures for speech recognition 

and feature coding at an increasingly larger scale (e.g., 

[24][19][53][39][7][8][44][54][13][56][30][48]). In this paper, we 

provide an overview of this body of work, with emphasis on more 

recent experiments which shed light onto the understanding of the 

basic capabilities and limitations of the current deep learning 

technology for speech recognition and related applications. 

     The organization of this paper is as follows. In Sections 2-5, we 

focus on several aspects of deep learning in the feature-domain 

with the theme of how deep models can enable the effective use of 

primitive, information-rich spectral features. The remaining 

sections are focused on the model-domain implementation of deep 

learning and on two application areas beyond acoustic modeling 

for speech recognition. Representative experimental results are 

shown to facilitate the analysis on the strengths and weaknesses of 

the techniques we have developed and illustrated in this paper.  

 
2.  BACK TO PRIMITIVE SPECTRAL FEATURES  

 

Deep learning, sometimes referred as representation learning or 

(unsupervised) feature learning [3] sets an important goal of 

automatic discovery of powerful features from raw input data 

independent of application domains. For speech feature learning 

and for speech recognition, this goal is condensed to the use of 

primitive spectral [26]or possibly waveform [46] features.  

     Over the past 30 years or so, largely “hand-crafted” 

transformations of speech spectrogram have led to significant 

accuracy improvements in the Gaussian mixture model (GMM) 

based HMM systems, despite the known loss of information from 

the raw speech data. The most successful transformation is the 

non-adaptive cosine transform, which gave rise to Mel-frequency 

cepstral coefficients (MFCC) and the related PLP features. The 

cosine transform approximately de-correlates feature components, 

which is important for the use of diagonal GMMs. However, when 

GMMs are replaced by deep learning models such as deep neural 

nets (DNN), deep belief nets (DBN), or deep autoencoders (DAE), 

such de-correlation become irrelevant due to the very strength of 

the deep learning methods in modeling data correlation. Our early 

work [19] demonstrated such strength and in particular the benefit 

of spectrograms over MFCCs in effective coding of bottleneck 

speech features using DAE in an unsupervised manner. Subsequent 

work carried out at Stanford [40] generalized the use of DAE from 

single modality of speech to bimodal speech and visual features. 

This success partly inspired the mixed-band and multilingual 

DNNs to be described in Section 4. 

     More recent experiments at Microsoft demonstrate noticeably 

lower speech recognition errors using large-scale DNNs when 

moving from MFCCs back to more primitive filter-bank features 

(i.e., a Mel-scaled spectrogram with no cosine transforms). Table 1 

is a summary of these experiments, where the DNN-HMM speech 

recognizer in a voice search task makes use of 72 hours of audio 

training data with over 26 million frames. The relative error rate 

reduction going from MFCC to filter-banks shown in Table 1 is 

comparable to that which we also observed for the TIMIT phone 

recognition task. Note the use of raw FFT features has not resulted 

in even lower errors, suggesting that current DNN training cannot 

automatically learn Mel-like filter weights. The same difficulty is 

also found for learning or improving delta-like features as shown 

in the bottom two rows of Table 1. 

 

Table 1: Comparing MFCC with filter-bank features 

      

     One advantage of MFCC is its automatic normalization (after 

removing C0) of power variation arising from different microphone 

gains associated with different data sets. When spectral (or time-

domain) features are used, each feature component is subject to 

such variation [46]. However, when the data sets are obtained from 

the same source in training the DNN system (as is the case for the 

Systems (Features: static+Δ+ΔΔ) Word error rate 
Best GMM-HMM (MFCCs; fMPE+BMMI) 34.7% 

DNN (MFCCs) 31.6% 

DNN (256 log FFT bins) 32.3% 

DNN (29 log filter-banks) 30.1% 

DNN (40 log filter-banks) 
    -Static 40-log-filter-banks only (11-frames) 
    -Static 40-log-filter-banks only (19-frames) 

29.9% 
31.1% 
30.5% 
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task of Table 1), similar error rates are obtained with and without 

applying a sentence-level spectral feature normalization procedure 

(30.0% vs. 30.1%). But when the data sets are from diverse 

sources, we observed that the application of feature normalization 

procedures has reduced the error rate from 24.5% to 23.7%. 

Effective online normalization of features, however, is a 

cumbersome process in practical speech recognition scenarios. 

This raises a need for improving the current DNN method in 

handling amplitude or power variation across all spectral feature 

components. One potential solution is the use of rectified linear 

instead of sigmoid hidden units. 

 

3.  CONVOLUTION ON SPECTRAL FEATURES 

 
Compared with MFCCs, “raw” spectral features not only retain 

more information (including possibly redundant or irrelevant one), 

but also enable the use of convolution and pooling operations to 

represent and handle some typical speech invariance and 

variability --- e.g., vocal tract length differences across speakers, 

distinct speaking styles causing formant undershoot or overshoot, 

etc. --- expressed explicitly in the frequency domain.  

     As a baseline, we explored a primitive convolutional neural net 

(CNN) [1] where the pooling configuration is fixed. The larger 

pooling size enforces a greater degree of invariance to frequency 

shifts while also running a greater risk of confusion among 

different speech sounds with similar formant frequencies. Based on 

detailed error analysis, we have developed a strategy for trading 

between invariance and discrimination. This strategy reduces the 

TIMIT core test set’s phone recognition error rate to 19.7% from 

20.4%. After regularizing the CNN using a variant of the 

“dropout” technique [25], the error rate drops further to 18.7%. 

Note all the above error analysis and the interpretation of the 

convolution and pooling operations in the CNN have been made 

possible after the change from the use of MFCC to spectral 

features. Details of this new deep CNN and error analysis are 

provided in [17]. 

 

4. LEARNING MULTI-TASK FEATURES 

 
From its very original motivation, deep learning or representation 

learning algorithms are designed to make them especially powerful 

in multi-task scenarios that would benefit from universal or shared 

feature representations in the intermediate layer(s) of the deep 

architecture; e.g., [40]. In this section, we present and analyze two 

sets of speech recognition experiments to demonstrate that the 

DNN is a universal learner that effectively handles heterogeneous 

data from different acoustic sources and languages.  

 

4.1 Mixed-Band DNN 

In this set of experiments, we design the filter-banks in such a 

way that the narrowband (8-kHz) data are treated as wideband (16-

kHz) data with half of the feature dimensions missing. We use the 

same filter-bank design that is described and used in [20]. For the 

8-kHz data, the upper filter banks are padded with 0’s in the 

multitask architecture shown in Figure 1a. The common layers 

extract features that correlate with both the narrowband and 

wideband data. 

     Experiments have been carried out on a large-scale speech 

recognition task, with the results summarized in Table 2; see 

details in [34]. The use of additional narrowband data, which is 

very different but highly correlated with wideband data (of primary 

  
Figure 1: a) left: DNN training/testing with mixed-band acoustic 

data with16-kHz and 8-kHz sampling rates; b) right: Illustrative 

architecture for multilingual DNN  

 

business interest to us), has reduced the error rate from 30.0% to 

28.3%, amounting to 5.7% relative error reduction with the number 

of test words being 26,757. In our group’s previous work, we made 

several attempts to exploit narrowband data (plentiful from earlier 

telephone-based applications) to benefit training the wideband 

speech models in the GMM-HMM framework without success. 

Switching to the DNN created a quick success. 

 

Table 2: DNN performance on wideband and narrowband test sets 

(a multitask-learning setup) using mixed-bandwidth training data. 

Training Data Test WER 

(Wideband) 

Test WER 

(Narrowband) 

Wideband only 30.0% 71.2% 

Narrowband only - 29.0% 

Wideband+Narrowband 28.3% 29.3% 

 

4.2 Multi-Lingual DNN 

Multilingual speech recognition is of high practical value.  It 

has a long history of research, making use of many sources of prior 

knowledge including phonology and speech production [43][16] 

and of model adaptation [35] or neural net initialization [49][51]. 

However, given the very nature of multitask machine learning (as 

reviewed in [11]), multilingual speech recognition is best suited for 

the DNN where the intermediate hidden layer(s) is expected to 

provide universal representations across multiple languages’ 

acoustic data that are highly correlated. 

We developed and experimentally evaluated the multilingual 

DNN architecture shown in Figure 1b. It has the input and hidden 

layers shared by all languages, but separate output layers are made 

specific to each language. In the training phase, the multilingual 

DNN is exposed to the training acoustic data from all languages. 

Given a training data point, regardless of the language, all shared 

DNN parameters are updated, but we learn only the top-layer 

weights corresponding to the correct language. After the training, 

the entire DNN except the top layer can be considered as the 

feature extractor shared across all languages. 

 Using this language-universal feature extractor, we readily 

construct a powerful monolingual DNN for any target language as 

follows. First, the top layer and its connection to the hidden layer 

trained previously are discarded. Then, a new top layer 

corresponding to the target language’s senone set is built and the 
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weights to the language-universal hidden layer are trained using 

the limited training data from the target language. 

     The multilingual DNN has been evaluated on a Microsoft-

internal speech recognition task. In the training set, we used French 

(FRA), German (DEU), Spanish (ESP), and Italian (ITA) as the 

resource-rich languages, with 138 hours, 195 hours, 63 hours, and 

93 hours of speech data, respectively. In Table 3, the final WERs 

are compared on a FRA test set for two monolingual FRA DNNs: 

one is trained using only FRA data and the other extracted from the 

multilingual (FRA+DEU+ESP+ITA) DNN. The latter DNN gives 

3.5% fewer errors than the former DNN. 

Table 3: Comparing DNN word error rates on a resource-rich 

task (FRA training data=138 hrs) w. & wo other languages 

Speech Recognizers WER on FRA 

DNN trained with only FRA data 28.1% 

DNN trained with FRA + DEU + ESP+ ITA 27.1% 

 

     For cross-lingual evaluation of the multilingual DNN, we 

used 9 hours of training data from U.S. English (ENU) as the 

resource-limited target language, with typical results presented in 

Table 4.  Retraining only the top layer gives lower errors than 

retraining all layers due to the data sparsity in ENU. Adding three 

more source languages in training further reduces recognition 

errors. We see that the multilingual DNN provides an effective 

structure for transferring information learnt from multiple 

languages to the DNN for a resource-limited target language due to 

phonetic information sharing. 

Table 4: Comparing DNN word error rates on a resource-

limited task (ENU training data=9 hrs) w. & wo other languages.  

Speech Recognizers WER on ENU 

DNN trained with only ENU data 30.9% 

    +FRA, retrain all layers with ENU 30.6% 

or +FRA, retrain the top layer with ENU 27.3% 

or +FRA+ DEU+ ESP+ITA, retrain top layer 25.3% 

 

5. NOISE-ROBUST INTERNAL FEATURES 

 
A main benefit of the DNN as the acoustic model is its ability to 

discover representations that are stable with respect to variations in 

the training data. One significant source of such variations is 

environmental noise. In order to evaluate the noise-robustness of 

DNN-based acoustic models, we performed a series of experiments 

using Aurora 4, a medium-vocabulary corpus based on WSJ0.    

The results in Table 5 compare the performance of four 

systems on the Aurora 4 task. The first is the baseline GMM-HMM 

system with no compensation. The second system [21] represents 

the state of the art in noise robustness for HMM-based speech 

recognition, combining MPE discriminative training and noise-

adaptive training (e.g., [31][12]) to compensate for noise and 

channel mismatch. The third system uses a log-linear model with 

features derived from HMM likelihoods [41]. The final system is a 

DNN-HMM with 7 hidden layers and 2000 hidden units per layer. 

This system uses no explicit noise compensation algorithm. The 

DNN-HMM significantly outperforms the other systems. In 

addition, the DNN-HMM result was obtained in a single pass, 

while the previous two systems require multiple passes for 

adaptation. These results clearly demonstrate the inherent 

robustness of the hidden-layer features in the DNN to unwanted 

variability from noise and channel mismatch.  

Table 5: Word error rate (%) for all four test sets (A, B, C, 

and D) of the Aurora 4 task. DNN outperforms GMM systems 

 
 

6. DNN ADAPTATION 

Adapting DNN acoustic models is more difficult than adapting 

GMMs. We have recently investigated the affine transformation 

and several of its variants for adaptation of the top hidden layer 

[52]. The feature-space discriminative linear regression (fDLR) 

method [2] with an affine transformation on the input layer is also 

evaluated. We have implemented stochastic gradient descent 

(SGD) and batch update methods for the above adaptation 

techniques. Both implementations lead to significant reduction of 

word error rates on top of a baseline DNN system.  Shown in Table 

6, on a large vocabulary speech recognition task, a SGD 

implementation of the fDLR and the top softmax layer adaptation 

is shown to reduce word errors by 17% and 14%, respectively, 

compared to the baseline DNN performance. Using a batch update 

for adapting the softmax layer reduces recognition errors by 10%.  

     We have recently developed a KL-distance based regularization 

method [33] to improve robustness of the DNN system under the 

condition of a small number of adaptation utterances [55]. As 

shown in Table 7, on a large vocabulary system, the method shows 

6% to 20% relative error reductions using 5 to 200 supervised 

adaptation utterances compared with the baseline DNN. (For the 

unsupervised case, the improvement is somewhat less.)   

 

Table 6: DNN adaptation using SGD and batch implementations 

Speech Recognition Systems WER WERR (%) 

GMM-HMM 43.6%  

DNN 34.1% - 

DNN + AdaptSoftMax (SGD) 29.4% 13.9 

DNN + fDLR (SGD) 28.5% 16.8 

DNN + AdaptSoftMax (batch) 30.9% 9.3 

 

Table 7: Word error rates for varying number (200, 50, and 5) of 

adaptation utterances. DNN baseline error rate 34.1%.  

Adaptation Methods 200 50 5 

fDLR  28.5% 30.4% 36.5% 

KL-regularization  27.5% 28.4% 32.1% 

 

7. RECURRENT NETWORKS FOR LANGAUGE 

MODELING 
In the approach described here, we explore the capability of a 

neural net to combine and exploit information of diverse types, and 

apply it to the task of language modeling. This approach has been 

proposed in dialog systems with a feed-forward net [57] and more 

recently for recurrent nets [47][37]. In all these approaches the 

basic idea is to augment the input to the network with information 

above-and-beyond the immediate word history. In [37], we 

propose the architecture of Fig. 2, which adds a side-channel of 

information to the basic recurrent network of [38]. By providing a 

side-channel consisting of a slowly changing Latent Semantic 

Analysis (LSA) representation of the preceding text in the Penn 

Treebank data, we improved perplexity over a Kneser-Ney 5-gram 

 A B C D AVG 

GMM-HMM (Baseline) 12.5 18.3 20.5 31.9 23.9 

GMM (MPE+VAT)  7.2 12.8 11.5 19.7 15.3 

GMM + Deriv. Kernels 7.4 12.6 10.7 19.0 14.8 

DNN (7x2000) 5.6 8.8 8.9 20.0 13.4 

. 
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model with a cache from 126 to 110 – to our knowledge the best 

single-model perplexity reported for this dataset. Interestingly, 

these gains hold up even after interpolating a standard recurrent net 

with a cache model, indicating that the context-dependent recurrent 

net is indeed exploiting the topic information of the LSA vector, 

and not just implementing a cache. In subsequent experiments, we 

have found that this architecture is able to use other sources of 

information as well; for example, in initial experiments with a 

voice-search application, conditioning on a latent-semantic 

analysis representation of a user’s history has reduced the 

perplexity of a language model from 135 to 122. 

 
      Figure 2: Recurrent neural network with side-channel information 

 

8. STATE TRACKING FOR SPOKEN DIALOGUE 
We have also begun applying deep learning to spoken dialogue 

systems, specifically the component of dialog state tracking.  The 

objective of dialog state tracking is to assign a probability of 

correctness to user goals at time t given the history of the dialogue 

from 0…𝑡 − 1 , and historical information about the user.  For 

example, in a bus timetable application, a user goal is the user’s 

location, intended destination, and desired arrival or departure date 

and time, the dialogue history includes everything the system has 

asked so far and all of the spoken language understanding results 

observed, and the historical information about the user includes 

which locations they have asked for in the past.  In practice, 

probabilities are assigned to the subset of most promising goals, 

and also to a special class that indicates that none of the goals is 

correct.  Deep networks are attractive here because there are many 

interactions among features that predict the correctness of a user 

goal. 

     One way of framing the dialogue state tracking problem is to 

construct a binary classifier that scores candidate user goals as 

correct or incorrect in isolation; normalizing the scores yields a 

distribution over all goals.  Following this approach, we recently 

explored the application of the deep stacking network or DSN 

[13][14] to this task. Our initial experiments show its performance 

is on par with state-of-the-art classifiers. Table 8 summarizes the 

preliminary results using a slightly tuned DSN on a corpus of 

dialogs from the spoken dialog challenge 2010 [5] and 2011-2012, 

where the percent accuracy indicates how often the correct user 

goal was identified.  Results are similar to our strongest baseline -- 

a tuned, highly optimized maximum entropy classifier.  In future 

work we plan to conduct an evaluation in an end-to-end dialog 

system, and to tackle the technical challenge of instance-dependent 

sizes of the classes and feature dimensions by incorporating 

structure into the deep learning architectures. 

Table 8: Goal tracking accuracy for five slots using a baseline 

maximum entropy model and a DSN.  Experiments were done on a 

fixed corpus of dialogs with real users.   

 Baseline DSN 

Bus route 58.0% 58.1% 

Origin location 56.4% 57.1% 

Destination location 66.5% 65.4% 

Date 83.9% 84.6% 

Time 63.1% 62.5% 

    
     The input to the dialog state tracking component of the full 

dialogue system comes from the speech understanding component. 

We have also explored the use of various versions of deep learning 

models for this task, with highly promising results reported in 

[15][50]. 

9. SUMMARY AND DISCUSSION 
This paper provides selected samples of our recent experiments on 

applying deep learning methods to advancing speech technology 

and related applications, including feature extraction, acoustic 

modeling, language modeling, speech understanding, and dialogue 

state estimation. 

A major theme we adopt in writing this overview goes to the 

very core of deep learning --- automatic learning of representations 

in place of hand-tuned feature engineering. To this end, we 

presented experimental evidence that spectrogram features of 

speech are superior to MFCC with DNN, in contrast to the earlier 

long-standing practice with GMM-HMMs. New improvements on 

DNN architectures and learning are needed to push the features 

even further back to the raw level of acoustic measurements. 

     Our and other’s work over past few years has demonstrated that 

deep learning is a powerful technology; e.g. on the Switchboard 

ASR task the word error rate has reduced sharply from 23% in the 

GMM-HMM system as prior art to as low as 13% currently 

[32][48]. Our future work on deep learning research is directed 

towards three largely orthogonal directions: 1) more effective deep 

architectures and learning algorithms, including enhancing recently 

developed techniques  (e.g., [4][9][17][42]); 2) scaling deep model 

training with increasingly larger data sets [6][10][48][29]; and 3) 

extending the applications of deep learning models to other areas 

of speech and language processing, and beyond (e.g., preliminary 

and promising applications to speech synthesis [36], end-to-end 

speech understanding and translation [22][58], recognition 

confidence measure [28], and information retrieval [18]).  
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