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ABSTRACT 

 
In this paper, we provide an overview of the invited and 

contributed papers presented at the special session at ICASSP-

2013, entitled “New Types of Deep Neural Network Learning for 

Speech Recognition and Related Applications,” as organized by 

the authors. We also describe the historical context in which 

acoustic models based on deep neural networks have been 

developed. 

     The technical overview of the papers presented in our special 

session is organized into five ways of improving deep learning 

methods: (1) better optimization; (2) better types of neural 

activation function and better network architectures; (3) better 

ways to determine the myriad hyper-parameters of deep neural 

networks; (4) more appropriate ways to preprocess speech for deep 

neural networks; and (5) ways of leveraging multiple languages or 

dialects that are more easily achieved with deep neural networks 

than with Gaussian mixture models.  

 
Index Terms— deep neural network, convolutional neural 

network, recurrent neural network, optimization, spectrogram 

features, multitask, multilingual, speech recognition, music 

processing 

 

1. INTRODUCTION 
 

In recent years, the speech recognition community has seen a 

revival of interest in neural networks, which were popular during 

late 80’s and early 90’s but could not significantly outperform the 

very successful combination of HMMs with acoustic models based 

on Gaussian mixtures. Three main factors were responsible for the 

recent emergence of neural networks as high-quality acoustic 

models: (1) making the networks deeper makes them more 

powerful, hence deep neural networks (DNN); 2) initializing the 

weights sensibly [24][43][16][52] and using much faster hardware 

makes it possible to train deep neural networks effectively, and 3) 

using a larger number of (context-dependent) output units 

[8][10][48][49][53] greatly improves their performance. 

     The papers presented in this special session feature both the 

current state-of-the-art practice of DNNs and some promising new 

developments beyond the standard network architectures and 

learning methodologies. The new types of DNN models and 

learning techniques hold promise for creating better technology for 

future-generation speech recognition and possibly other 

applications. 

     To help readers understand and appreciate the material 

presented in our special session, we include an overview of the 

historical context in which DNN technology has been developed. 

The application areas covered include speech recognition, music 

processing, and language processing. 

 

2. SPECIAL SESSION MOTIVATIONS 

 
Deep learning has become increasingly popular [38] since the 

introduction of an effective new way of learning deep neural 

networks in 2006 [25][26]. It has proved very successful for 

acoustic modeling in speech recognition especially for large-scale 

tasks, and this success has been based largely on the use of the 

back-propagation algorithm with rather standard, feed-forward 

multi-layer neural networks; see a comprehensive review in [24] 

and reviews of earlier work in [6][44]. In addition to improved 

learning procedures, the main factors that have contributed to the 

recent successes of deep neural networks have been the availability 

of more computing power, the availability of more training data, 

and better software engineering. The initial breakthrough in 

acoustic modeling was triggered by the use of a generative, layer-

by-layer pre-training method for initializing the weights sensibly 

before running the discriminative back-propagation learning 

procedure, but subsequent research has revealed that generative 

pre-training is unnecessary when there is a very large amount of 

labeled training data. Back-propagation can be started from 

random initial weights provided their scales are carefully 

determined to prevent the initial error derivatives from being very 

large or very small.  

     More than a year ago, four research groups (a group at Google 

plus the three groups represented by the current organizers) wrote 

an overview article [24] in which they presented their shared views 

on applying DNNs to acoustic modeling in speech recognition. 

Since then, the four groups and other speech or machine learning 

groups around the world have done a lot of new work developing 

new models and learning methods, and performing new evaluation 

experiments. The main aim of this special session is to highlight 

advances in the application of DNNs over the last year.  

  

3. THE RECENT HISTORY OF DEEP NEURAL 

NETWORKS FOR ACOUSTIC MODELING 

 
The DNNs that first showed big improvements over Gaussian 

Mixture Models (GMMs) for acoustic modeling all used minor 

variations of the same  successful recipe, but training was so slow, 

even on GPUs, that it was impossible to perform the extensive 

experimentation required to establish  which aspects of this recipe 

made it successful.  What was important initially was to find any 

reasonable way of training DNNs that allowed them to outperform 
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GMMs and shallow neural nets. The particular recipe was just the 

first successful method to be developed and it was based on a lot of 

intuitive guesses without much evidence to support the individual 

decisions.   

The successful recipe that was originally used in [42] presented 

at the NIPS-2009 Workshop [17] to train an acoustic model for 

speech recognition on the TIMIT database differed in several ways 

from previous attempts to use neural networks for acoustic 

modeling.  The nets were much deeper and larger than previous 

attempts, having up to eight hidden layers with a few thousand 

hidden units per layer and full connectivity between adjacent 

layers. The final fine-tuning of the nets used the standard, 

discriminative back-propagation algorithm to compute gradients 

and stochastic gradient descent with momentum to update the 

weights, but before the fine-tuning started, the weights were 

initialized by using an unsupervised learning algorithm that had no 

knowledge of the labels used for fine-tuning. The unsupervised 

learning algorithm learned one hidden layer of binary stochastic 

features at a time with the aim of the learning being to model the 

statistical structure of the patterns of feature activations in the layer 

below (or in the MFCCs  when learning the first hidden layer).  

Results were found to be only slightly superior to the then-best-

performing single system, which was built on a deep/dynamic 

generative model called the hidden trajectory model (HTM) 

[14][15], in the literature and evaluated on the identical task. The 

error patterns produced by these two separate systems (DNN-

HMM vs. HTM) were carefully analyzed at MSR and found to be 

very different, reflecting distinct core capabilities of the two 

approaches and motivating further studies on the DNN approach.  

 Over the following few years, researchers using DNNs for 

speech recognition discovered a lot of things about this recipe:  

 

1) It works well for LVCSR and it works even better for 

LVCSR if the DNN’s output units correspond to context dependent 

HMM states, and importantly, this choice keeps the decoding 

algorithm largely unchanged. 

 

2) When there is a large amount of labeled data, the main effect 

of the pre-training is just to get the initial weights to be about the 

right scale so that back-propagation works well. But there are 

simpler ways of doing this.  

 

3) Even if we use layer-by-layer pre-training, there are many 

alternatives to using Restricted Boltzmann Machines (RBMs) for 

pre-training each layer. 

 

4) DNNs work significantly better on filterbank outputs than on 

MFCCs. 

 

5) Speaker-dependent methods provide surprisingly little 

improvement over speaker-independent DNNs. While this was 

initially somewhat disappointing, using speaker-independent 

models reduces computational expense and latency when these 

models are used in applications. 

 

6) DNNs work well for noisy speech. 

 

7) Using full connectivity between the early layers is simple but 

not sensible. DNNs work much better for acoustic modeling if we 

use one or more convolutional layers that do weight-sharing across 

nearby frequencies and then pool the filter responses to similar 

frequencies thus giving some invariance to vocal tract differences 

between speakers. 

 

     8) Using standard logistic neurons is sensible but not optimal. 

DNNs learn much faster if we use rectified linear units. These also 

overfit faster but a new regularization method called “dropout” is 

very effective at controlling this overfitting. 

 

     9) The same methods can be used for applications other than 

acoustic modeling. 

 

    10) The DNN architecture can be used for multi-task learning in 

several different ways and DNNs are far more effective than 

GMMs at leveraging data from one task to improve performance 

on related tasks. 

 

Some of these new discoveries about applying DNNs to speech 

recognition are described in the papers we selected for our special 

session and we describe those discoveries in more detail in the next 

section.  

 

4. OVERVIEW OF THE SPECIAL SESSION PAPERS 
 

Here we provide a technical overview of the five papers selected 

for the special session. The technical overview covers five 

promising ways of improving deep learning methods: (1) better 

optimization; (2) better types of neural activation function and 

better network architectures; (3) better ways to optimize the myriad 

hyper-parameters of DNNs; (4) more appropriate ways to pre-

process speech for DNNs; and (5) ways of leveraging multiple 

languages or dialects that are more easily achieved with DNNs 

than with Gaussian mixture models.  
     Online, stochastic gradient descent has been the workhorse for 

neural network training, including deep learning, for over 25 

years.  This is not an accident, for stochastic gradient descent 

enjoys a number of advantages:  it is very easy to implement; it 

makes extremely rapid progress per training sample processed [5], 

and well-implemented stochastic gradient descent (where care is 

taken in the randomization of training samples and choice of 

learning rates) frequently converges to better local optima than 

other algorithms. 

     The main problems with stochastic gradient descent have been 

the challenge of scaling to very large data sets and networks with 

many parameters and the challenge of learning very deep or 

recurrent neural network models.  For scaling up deep learning, the 

most common recent solution has been the use of GPU 

hardware.  The paper from Google [22] is notable because it 

features a distributed framework for deep learning that successfully 

uses a large compute cluster.  The framework, called DistBelief 

[11][35], uses an asynchronous version of stochastic gradient 

descent that uses many different replicas of the neural net to 

compute gradients on different subsets of the training data in 

parallel. These gradients are communicated to a central parameter 

server that updates the shared weights and even though each 

replica will typically be computing gradients using slightly stale 

parameter values, stochastic gradient descent is robust to the slight 

errors this introduces. DistBelief also distributes the 

implementation of each replica across many cores which greatly 

increases the degree of parallelization.  

     Training very deep neural networks with stochastic gradient 

descent is difficult because the gradients tend to decrease as they 

are back-propagated through multiple levels of nonlinearity. 
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DistBelief deals with this problem by separately adapting the 

learning rate for each parameter. For recurrent neural networks, 

which are typically very deep in time, the “vanishing gradients" 

problem is even more severe. Recently developed versions of 

semi-online, second order optimization methods that use stochastic 

curvature estimates, such as Hessian-free optimization [39][40] 

have revitalized work on recurrent network models. Hessian-free 

training is used in the IBM paper [48] for sequence-discriminative 

training.    

     The paper from the University of Montreal [3] explores the 

training of recurrent models using modifications to stochastic 

gradient descent, and, following the work of [51], shows that these 

modifications can outperform Hessian-free baselines. Optimization 

ideas that are explored in this work include clipping the gradient if 

its norm exceeds a threshold and a new formulation of Nesterov 

accelerated gradient training.  

     The use of recurrent neural networks for acoustic modeling was 

pioneered by Tony Robinson [47] but they then fell out of favor 

because of the difficulty of training them. Recently, however, 

recurrent neural networks have achieved excellent results at 

language modeling [41] and the use of multiple hidden layers has 

allowed recurrent neural networks to outperform all other methods 

on TIMIT [21]. 

     Related to optimization in deep learning are problems of 

regularization.  Generative pre-training and standard methods such 

as weight decay (L2 regularization) are important, but beyond 

those are other useful ideas.  The paper from the University of 

Toronto [9] describes “dropout,” which is a regularization method 

that randomly omits some fraction of the units in each hidden layer 

during training.  This procedure discourages brittle co-adaptations 

in which a hidden unit is useful only in the context of specific other 

hidden units. The dropout method is easily implemented and 

improves the performance of DNNs on a wide variety of standard 

benchmarks including TIMIT [23]. In the paper submitted to this 

special session, it is shown that dropout regularization can be 

combined with rectified linear hidden units to improve speech 

recognition on a 50-hour broadcast news task.  Another 

regularization method that is proving its worth is the application of 

a sparsity penalty to hidden representations in a network, which is 

explored in [3]. 

     A major barrier to the application of DNNs is that it currently 

requires considerable skill and experience to choose sensible 

values for hyper-parameters such as the learning rate schedule, the 

strength of the regularizer, the number of layers and the number of 

units per layer.  Sensible values for one hyper-parameter may 

depend on the values chosen for other hyper-parameters and hyper-

parameter tuning in DNNs is especially expensive because testing 

a single setting of the hyper-parameters is costly.   Papers in this 

special session describe two methods for tackling this problem: 

paper [9]  uses an off-the-shelf Bayesian optimization procedure 

[50], while paper [3] employs a sampling procedure [4] to avoid 

the expense of a full grid search. 

     Exploring different types of neuron activation function and 

different network architectures is a theme common to many papers 

in this session.  Both papers [9] and [3] explore the use of rectified 

linear hidden units instead of logistic or tanh 

nonlinearities.  Rectified linear units compute y = max(x, 0), and 

lead to sparser gradients, less diffusion of credit and blame in deep 

or recurrent networks, and faster training [54]. Paper [3] also 

proposes the use in recurrent networks of an explicit subset of 

leaky integrator units in the state-to-state map to better capture 

long-range dependencies, as well as the use of a powerful output 

probability model, the neural autoregressive distribution estimator 

[34].  

     Convolutional neural networks have been widely used in 

computer vision [36] where they have been very successful [32]. 

They showed early promise for acoustic modeling [33] but were 

later abandoned, probably because the convolution was done 

across time rather than across frequency. Temporal variation is 

already well-handled by the HMM so convolution across 

frequency is much more helpful because it provides partial 

invariance to changes in the properties of the vocal tract. In an 

important paper, Abdel-Hamid et. al. [1] demonstrated that 

convolution across frequency was very effective for TIMIT. More 

recent work described in the papers from Microsoft [12][2][13] 

shows that designing the convolution and pooling layers to 

properly trade-off between invariance to the vocal tract length and 

discrimination among speech sounds together with the “dropout” 

technique of regularization [27] leads to much better TIMIT phone 

recognition accuracy. This set of work also points to the direction 

of trading-off between trajectory discrimination and invariance 

expressed in the whole dynamic pattern of speech defined in mixed 

time and frequency domains using well designed weight sharing 

and pooling. The IBM paper [48] shows that convolutional neural 

networks are also useful for LVCSR and further demonstrates that 

multiple convolutional layers provide even more improvement 

when the convolutional layers use a large number of convolution 

kernels (i.e. feature maps).   

     In light of the powerful DNN learning architectures and 

algorithms developed recently, it is useful to re-examine some 

long-standing assumptions about the best ways to pre-process 

speech for acoustic modeling. Spectrograms contain rich 

information, but systems that use GMMs for acoustic modeling 

work best with transformed features such as MFCCs or PLPs 

whose elements are largely de-correlated. The powerful learning 

procedures for DNNs allow them to handle correlations between 

input features and also allow them to transform spectrograms in 

whatever way they want. This completely changes the 

conventional wisdom about the kind of pre-processing that is most 

helpful. The paper by Microsoft [12] analyzes the fundamental 

issue of what are effective features for use in the pattern 

recognition component of speech recognition. It reviews the use of 

spectrograms as the input features for deep auto-encoders to extract 

bottleneck higher-level features [18] and the extended work on 

multi-modal deep auto-encoder [45] (see the most recent work on 

audio-visual deep learning in [28]). It also presents the recent 

results on a DNN-based, large vocabulary speech recognizer with 

(Mel-scaled) spectrograms as the input features which outperforms 

the same recognizer but with MFCCs as the input features.   
     The final theme that emerges from the set of selected papers is 

the excellent performance of DNN acoustic models for multi-task 

learning [7].  Shallow models such as the GMMs used in the 

previous generation of acoustic models do not benefit nearly as 

much as DNNs from being trained on multiple languages 

simultaneously or from being trained on one language and then 

modified for another language (e.g. [37]).  Both the Microsoft 

paper [12] (also [29]) and the Google paper [22] elaborate such a 

new capability, sharing the same example of multilingual speech 

recognition. In Figure 1, the multi-task learning accomplished by 

DNN is shown for two scenarios: a) with high practical value: 

learning joint representation for both 16k and 8k acoustic data for 

performing recognition for both wideband (e.g., high quality smart 

phone) voice search and narrowband telephony speech recognition, 

and b) multilingual or cross-lingual speech recognition that 
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effectively leverages acoustic training data across a wide range of 

languages. 

 

 

      

  
 

Figure 1: a) left: DNN training/testing with mixed-band acoustic 

data with16-kHz and 8-kHz sampling rates; b) right: Illustrative 

architecture for a multilingual DNN  

 

 

5. CONCLUSIONS 

 
In summary, the articles in our special session demonstrate that 

there continues to be rapid progress in acoustic models that use 

DNNs and that similar methods are also applicable in related 

domains such as music. The progress is occurring on many 

different fronts and is widening the already significant 

performance gap between acoustic models based on DNNs and 

those based on GMMs. We believe that the lessons we are learning 

in acoustic modeling are likely to be relevant to a wide range of 

other signal processing, language processing, machine learning, 

and artificial intelligence tasks.   
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