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ABSTRACT

We consider the problem of building high-level, class-specific
feature detectors from only unlabeled data. For example, is
it possible to learn a face detector using only unlabeled im-
ages? To answer this, we train a deep sparse autoencoder on
a large dataset of images (the model has 1 billion connec-
tions, the dataset has 10 million 200x200 pixel images down-
loaded from the Internet). We train this network using model
parallelism and asynchronous SGD on a cluster with 1,000
machines (16,000 cores) for three days. Contrary to what ap-
pears to be a widely-held intuition, our experimental results
reveal that it is possible to train a face detector without hav-
ing to label images as containing a face or not. Control ex-
periments show that this feature detector is robust not only to
translation but also to scaling and out-of-plane rotation. We
also find that the same network is sensitive to other high-level
concepts such as cat faces and human bodies. Starting from
these learned features, we trained our network to recognize
22,000 object categories from ImageNet and achieve a leap
of 70% relative improvement over the previous state-of-the-
art.

1. INTRODUCTION

The focus of this work is to build high-level, class-specific
feature detectors from unlabeled images. For instance, we
would like to understand if it is possible to build a face
detector from only unlabeled images. This approach is in-
spired by the neuroscientific conjecture that there exist highly
class-specific neurons in the human brain, generally and in-
formally known as “grandmother neurons.” The extent of
class-specificity of neurons in the brain is an area of active
investigation, but current experimental evidence suggests
the possibility that some neurons in the temporal cortex
are highly selective for object categories such as faces or
hands [1], and perhaps even specific people [2].

Contemporary computer vision methodology typically
emphasizes the role of labeled data to obtain these class-
specific feature detectors. For example, to build a face detec-
tor, one needs a large collection of images labeled as contain-
ing faces, often with a bounding box around the face. The
need for large labeled sets poses a significant challenge for
problems where labeled data are rare. Although approaches

that make use of inexpensive unlabeled data are often pre-
ferred, they have not been shown to work well for building
high-level features.

This work investigates the feasibility of building high-
level features from only unlabeled data. A positive answer
to this question will give rise to two significant results. Prac-
tically, this provides an inexpensive way to develop features
from unlabeled data. But perhaps more importantly, it an-
swers an intriguing question as to whether the specificity of
the “grandmother neuron” could possibly be learned from un-
labeled data. Informally, this would suggest that it is at least
in principle possible that a baby learns to group faces into one
class because it has seen many of them and not because it is
guided by supervision or rewards.

Unsupervised feature learning and deep learning have
emerged as methodologies in machine learning for building
features from unlabeled data. Using unlabeled data in the
wild to learn features is the key idea behind the self-taught
learning framework [3]. Successful feature learning algo-
rithms and their applications can be found in recent literature
using a variety of approaches such as RBMs [4], autoen-
coders [5, 6], sparse coding [7] and K-means [8]. So far, most
of these algorithms have only succeeded in learning low-level
features such as “edge” or “blob” detectors. Going beyond
such simple features and capturing complex invariances is the
topic of this work.

Recent studies observe that it is quite time intensive to
train deep learning algorithms to yield state of the art re-
sults [9]. We conjecture that the long training time is partially
responsible for the lack of high-level features reported in the
literature.

We address this problem by scaling up the core compo-
nents involved in training deep networks: the dataset, the
model, and the computational resources. First, we use a large
dataset generated by sampling random frames from random
YouTube videos.1 Our input data are 200x200 images, much
larger than typical 32x32 images used in deep learning and
unsupervised feature learning [11, 9, 12, 8]. Our model, a
deep autoencoder with pooling and local contrast normaliza-
tion, is scaled to these large images by using a large com-
puter cluster. To support parallelism on this cluster, we use
the idea of local receptive fields, e.g., [13, 12, 14]. This idea

1This is different from the work of [10] who trained their model on images
from one class.
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reduces communication costs between machines and thus al-
lows model parallelism (parameters are distributed across ma-
chines). Asynchronous SGD is employed to support data par-
allelism. The model was trained in a distributed fashion on a
cluster with 1,000 machines (16,000 cores) for three days.

Experimental results using classification and visualization
confirm that it is indeed possible to build high-level features
from unlabeled data. In particular, using a hold-out test set
consisting of faces and distractors, we discover a feature that
is highly selective for faces. This result is also validated by vi-
sualization via numerical optimization. Control experiments
show that the learned detector is not only invariant to trans-
lation but also to out-of-plane rotation and scaling. Similar
experiments reveal the network also learns the concepts of cat
faces and human bodies. More details about our results and
analyses are discussed in the full version of our paper [15].

The learned representations are also discriminative. Us-
ing the learned features, we obtain significant leaps in object
recognition with ImageNet. For instance, on ImageNet with
22,000 categories, we achieved 15.8% accuracy, a relative im-
provement of 70% over the state-of-the-art. Note that, random
guess achieves less than 0.005% accuracy for this dataset.

2. METHOD

Our training dataset is constructed by sampling frames from
10 million YouTube videos. To avoid duplicates, each video
contributes only one image to the dataset. Each example is a
color image with 200x200 pixels.

Fig. 1. The architecture and parameters in one layer of our
network. The overall network replicates this structure three
times. For simplicity, the images are in 1D.

Our algorithm is can be viewed as a sparse deep autoen-
coder with three important ingredients: local receptive fields,
pooling and local contrast normalization. First, to scale the
autoencoder to large images, we use a simple idea known
as local receptive fields [16, 13, 10, 12]. This biologically

inspired idea proposes that each feature in the autoencoder
can connect only to a small region of the lower layer. Next,
to achieve invariance to local deformations, we employ local
L2 pooling [17, 18, 12] and local contrast normalization [19].
L2 pooling, in particular, allows the learning of invariant fea-
tures [17, 12].

Our deep autoencoder is constructed by replicating three
times the same stage composed of local filtering, local pool-
ing and local contrast normalization. The output of one stage
is the input to the next one and the overall model can be in-
terpreted as a nine-layered network (see Figure 1). The first
and second sublayers are often known as filtering (or simple)
and pooling (or complex) respectively. The third sublayer per-
forms local subtractive and divisive normalization and it is in-
spired by biological and computational models [20, 21, 19].2

As mentioned above, central to our approach is the use of
local connectivity between neurons. In our experiments, the
first sublayer has receptive fields of 18x18 pixels and the sec-
ond sub-layer pools over 5x5 overlapping neighborhoods of
features (i.e., pooling size). The neurons in the first sublayer
connect to pixels in all input channels (or maps) whereas the
neurons in the second sublayer connect to pixels of only one
channel (or map). While the first sublayer outputs linear fil-
ter responses, the pooling layer outputs the square root of the
sum of the squares of its inputs, and therefore, it is known as
L2 pooling. Although we use local receptive fields, they are
not convolutional: the parameters are not shared across dif-
ferent locations in the image (c.f. [16, 19, 10]). In addition
to being more biologically plausible, unshared weights allow
the learning of more invariances other than translational in-
variances [12].

In terms of scale, our network is perhaps one of the largest
known networks to date. It has 1 billion trainable parame-
ters, which is more than an order of magnitude larger than
other large networks reported in literature, e.g., [9, 22] with
around 10 million parameters. It is worth noting that our net-
work is still tiny compared to the human visual cortex, which
is 106 times larger in terms of the number of neurons and
synapses [23].

The model was trained using approximately 1,000 ma-
chines using model parallelism (each model is splitted into
144 machines) and asynchronous SGD (with 5 model repli-
cas communicating the parameters asynchronously to a cen-
tral server of 256 machines). This optimization technique is
described in detail in [24].

3. EXPERIMENTS

In this section, we first focus on analyzing learned represen-
tations in recognizing faces (“the face detector”). Results for

2The subtractive normalization removes the weighted average of
neighboring neurons from the current neuron gi,j,k = hi,j,k −∑

iuv Guvhi,j+u,i+v The divisive normalization computes yi,j,k =

gi,j,k/max{c, (
∑

iuv Guvg2i,j+u,i+v)
0.5}, where c is set to be a small

number, 0.01, to prevent numerical errors. G is a Gaussian weighting win-
dow. [19]
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other concepts will follow.
The test set consists of 37,000 images sampled from two

datasets: Labeled Faces In the Wild dataset [25] and Ima-
geNet dataset [26]. There are 13,026 faces sampled from non-
aligned Labeled Faces in The Wild.3 The rest are distractor
objects randomly sampled from ImageNet. These images are
resized to fit the visible areas of the top neurons.

After training, we used this test set to measure the perfor-
mance of each neuron in classifying faces against distractors.
For each neuron, we found its maximum and minimum ac-
tivation values, then picked 20 equally spaced thresholds in
between. The reported accuracy is the best classification ac-
curacy among 20 thresholds.

The best neuron in the network performs very well in rec-
ognizing faces, despite the fact that no supervisory signals
were given during training. It achieves 81.7% accuracy in de-
tecting faces. There are 13,026 faces in the test set, so guess-
ing all negative only achieves 64.8%. The best neuron in a
one-layered network only achieves 71% accuracy while best
linear filter, selected among 100,000 filters sampled randomly
from the training set, only achieves 74%.

We also use two visualization techniques to verify if the
optimal stimulus of the neuron is indeed a face. The first
method is visualizing the most responsive stimuli in the test
set. Since the test set is large, this method can reliably de-
tect near optimal stimuli of the tested neuron. The second
approach is to perform numerical optimization to find the op-
timal stimulus [27, 28, 12]. In particular, we find the norm-
bounded input x which maximizes the output f of the tested
neuron, by solving:

x∗ = argmin
x

f(x;W,H), subject to ||x||2 = 1.

Here, f(x;W,H) is the output of the tested neuron given
learned parameters W,H and input x. In our experiments,
this constraint optimization problem is solved by projected
gradient descent with line search. Results, shown in Figure 2,
confirm that the tested neuron learns the concept of faces.

Fig. 2. Top: Top 48 stimuli of the best neuron from the test
set. Bottom: The optimal stimulus according to numerical
constraint optimization.

The network also learns other high-level concepts as well.
In particular, similar visualization reveals that it also learns
the concepts of cat faces, human bodies as well as other high-
level concepts (see Figure 3).

3http://vis-www.cs.umass.edu/lfw/lfw.tgz

Fig. 3. Visualization of the cat face neuron (top left) and hu-
man body neuron (top right), and top stimuli for some of the
neurons in the network (bottom).

We then applied the feature learning method to the task
of recognizing objects in the ImageNet dataset [26]. Starting
from a network that already learned features from YouTube
and ImageNet images using the techniques described above,
we then added one-versus-all logistic classifiers on top of the
highest layer of this network. This method of initializing a
network by unsupervised learning is also known as “unsu-
pervised pretraining.” During supervised learning with la-
beled ImageNet images, the parameters of lower layers and
the logistic classifiers were both adjusted. This was done by
first adjusting the logistic classifiers and then adjusting the
entire network (also known as “fine-tuning”). As a control
experiment, we also train a network starting with all random
weights (i.e., without unsupervised pretraining: all parame-
ters are initialized randomly and only adjusted by ImageNet
labeled data).

We followed the experimental protocols specified by [31,
29], in which, the datasets are randomly split into two halves
for training and validation. We report the performance on the
validation set and compare against state-of-the-art baselines
in Table 1. Note that the splits are not identical to previous
work but validation set performances vary slightly across dif-
ferent splits.

The results show that our method, starting from scratch
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Table 1. Summary of classification accuracies for our method and other state-of-the-art baselines on ImageNet.
Dataset version 2009 (∼9M images, ∼10K categories) 2011 (∼14M images, ∼22K categories)
State-of-the-art 16.7% [29] 9.3% [30]
Our method 16.1% (without unsupervised pretraining) 13.6% (without unsupervised pretraining)

19.2% (with unsupervised pretraining) 15.8% (with unsupervised pretraining)

(i.e., raw pixels), bests many state-of-the-art hand-engineered
features. On ImageNet with 10K categories, our method
yielded a 15% relative improvement over previous best pub-
lished result. On ImageNet with 22K categories, it achieved
a 70% relative improvement over the highest other result of
which we are aware (including unpublished results known to
the authors of [30]). Note, random guess achieves less than
0.005% accuracy for this dataset.
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