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ABSTRACT

Topic modeling is a well-known approach for document anal-
ysis. In this paper, we propose a new model, and correspond-
ing optimization algorithm for topic modeling. Experimental
results on polarity classification demonstrate that the new
model provides a more accurate characterization for doc-
ument corpus, and archived higher classification accuracy
compared to Latent Dirichlet Allocation (LDA).

Index Terms— topic modeling, non-negative matrix fac-
torization

1. INTRODUCTION

Topic modeling is a well-known computational tool for find-
ing thematic information from a given corpus. In recent years,
this approach and its variants have been proved to be very use-
ful in a large number of applications, including text and image
classification, clustering, retrieval etc., see, e.g. the discussion
paper [1] and references therein.

Traditionally, topic modeling was based on the assump-
tion that each document (or more generally, each observed
vector) is a combination of a small number of topic vectors [2,
3]. Based on this assumption, quite a few algorithms have
been developed, trying to solve the topic vectors given a cor-
pus [4, 3, 5, 6, 7]. As we will see in Section 3, by verifying
this assumption on real datasets, we found that the tractional
model is highly inaccurate. For example, a document often
contains certain keywords (person’s name, brand name, etc.)
that cannot be explained by common topics. We instead pro-
pose a joint topic-document model to better model the struc-
ture within a document corpus.

2. RELATED WORK

The idea of representing a document by a linear combination
of few “topics” can be track back to [4]. The theoretical com-
puter science community studied the studied the behavior of
the above algorithm [2]. In machine learning, many prob-
abilistic topic models were developed in recent years, e.g.
Latent Dirichlet Allocation (LDA) [3] and many of its vari-
ant like Correlated Topic Model (CTM) [5]. Accompanying

with the develop of topic models, varying algorithms have
been proposed, including Variational Bayesian [3], Gibbs
sampling [6] and stochastic gradient descent [8]. Despite its
empirical success, it is also shown that the inference of LDA
model is NP-Hard [9].

The inference of topic models has an intimate relation-
ship with non-negative matrix factorization (NMF), as the
non-negativity factors can be associated with a probabilistic
interpretation. Very recently, [7] studied how to use NMF
for topic modeling, and provided an algorithm with provably
approximation under a separability assumption. Many other
local search based algorithms also exist, e.g [10, 11].

3. OUR APPROACH

3.1. Issues with current approach

Topic modeling is based on the assumption that each docu-
ment in a corpus is a convex combination of relatively small
number of topic vectors. Therefore, the corpus, written as a
matrix by stacking the document vectors together, has a low-
rank structure. Mathematically, it assumes that the corpus D
has the following structure:

D ≈ BS, (1)

where B ∈ Rm×k consisting of k topic vectors, acting as the
basis of documents, and S ∈ Rk×n is the coefficient matrix,
k � n. To obtain a probabilistic interpretation, B and S
should satisfying the following condition:

B ≥ 0, S ≥ 0, ‖Bi‖1 = 1 for i ∈ [k], (2)

where Bi is the i-th column of the basis matrix B. We note
that for applications such as image analysis, the sum-to-1 con-
dition may not be necessary.

Although the above model is widely accepted, and has
been used explicitly or implicitly in [4, 3, 5], this generative
model is far from being accurate, empirically. To see this,
we analyze the spectral distribution of two datasets: the 20
Newsgroup dataset1 and the Movie Review dataset2. The

1Available at http://qwone.com/ jason/20Newsgroups/
2Available at http://www.cs.cornell.edu/people/pabo/movie-review-data/
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(a) 20 Newsgroup dataset (b) Movie Review dataset

Fig. 1. Singular value distribution of two typical corpora.
Both exhibit long tail distribution.

Variance 30% 50% 70% 90%
Rank 100 244 490 1001

Fig. 2. The minimum ranks required to capture 30%, 50%,
70%, and 90% of the variance of the TF·IDF matrix of the 20
Newsgroup dataset.

Movie Review dataset consists of 2000 reviews from the
IMDB database, and the 20 Newsgroup is a collection of
around 20,000 posts across 20 newsgroups. We randomly
select 2000 posts from 20 Newsgroup dataset, and employ
the standard pre-process to obtain the TF·IDF matrix D for
each dataset. The singular value distributions of the two
datasets are shown in Fig 1. The singular value distributions
of both datasets qualitatively exhibit very similar heavy-tail
distribution, which implies that the data matrices don’t have
an accurate low-rank approximation. As shown in Fig 2, to
capture 90% of the variance of D, we should choose k, the
number of topics, to be at least 1001. Notice that the rank
function only provides an lower-bound of non-negative rank,
as we further require B ≥ 0 and S ≥ 0.

Empirical studies such as [3, 8] often choose k to be 50
to 200. As a consequence, the basic model D ≈ BS is no
longer appropriate as there remains large amount of variation
in the data left unexplained by the model. To address this
issue, [12] proposed the joint topic-document model, D =
L + E, where L is the low-rank matrix capturing the back-
ground, or topic information, and E is a sparse matrix, rep-
resenting the document-specific keywords or keypharses that
cannot be explained by the (low-rank) topic model.

The joint topic-document model provides a more accurate
model for text corpus. Empirically, however, we found that
when we penalize L to be a relatively low-rank matrix, the
document-specific counterpart E is not so sparse. In addi-
tion, joint topic-document model only gives the span of topic
distribution. Very often it is necessary to obtain the distri-
bution for each topic and the corresponding mixture-of-topic
coefficients for tasks like document classification and cluster-
ing.

3.2. Noisy joint topic-document model

Based on the above observations and discussions, we would
like to come up with a model that can describe more accurate-
ly the corpus data. In particular we would like to model the
topics from a corpus as well as those document-specific key-
words, and remaining terms that cannot be represented by ei-
ther the background topic or the document-specific keywords.
More specifically, we would like to model our observed data
matrix D ∈ Rm×n as:

D = BS +E +N , (3)

where B is topic basis (or topic vector set), E corresponds
to the document-specific keywords, and N are the remain-
ing noises. We call this model the noisy joint topic-document
model. By allowing N to be reasonably large in variance, the
document-specific E can be made sufficiently sparse. Moti-
vated by the observation that each document should only con-
tain few topics, we can penalize the mixture-of-topic coeffi-
cients S by `1-norm. We penalize the sparse keywords part
E by `1-norm for the same reason.

Hence one can learn the above model from the data via
solving the following optimization problem

min
B,S,E,N

∑
i

‖Si‖21 + λ ‖E‖1 +
τ

2
‖N‖2F

subject to D = BS +E +N , B ≥ 0,

S ≥ 0, ‖Bj‖1 = 1 for j ∈ [k]. (4)

The reason to choose ‖S‖21,2 ,
∑
i ‖Si‖

2
1 as the regulariza-

tion instead of ‖S‖1 is twofold:

1. By choosing
∑
‖Si‖21, we enforce each document in

the given corpus to be a linear combination of a few
topics. The norm ‖S‖1 enforces the corpus as a whole
can be sparsely represented by B, but does not ensure
representations for the documents are evenly sparse.

2. Computationally, the regularizer
∑
i ‖Si‖

2
1 allows us to

have an efficient algorithm for the optimization prob-
lem. We will discuss this issue in detail in the next
section.

The above optimization problem also extends the stable prin-
cipal component pursuit [13] by providing a specific genera-
tive model for the low-rank topic component.

4. ALGORITHM

In this section, we study how to solve problem (6) efficiently.
It is easily seen that the optimization problem is non-trivial
due to the non-linear constraint D = BS + E +N , where
both B and S are unknown. Notice that the bilinear term also
occurs in non-negative matrix factorization, dictionary learn-
ing, and blind source separation. Our problem formulation
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(6) is closely related to dictionary learning, and the solution
is inspired by non-negative matrix factorization.

First, we can take care of the non-linear constraint under
the Augmented Lagrangian Method [14] framework to solve
the problem iteratively. Specifically, we solve the following
problem

min
B,S,E,N

‖S‖21,2 + λ ‖E‖1 +
τ

2
‖N‖2F

+
µ

2
‖D −BS −E −N‖2F (5)

+ 〈Y ,D −BS −E −N〉
subject to B ≥ 0, S ≥ 0, ‖Bj‖1 = 1 for j ∈ [k], (6)

where Y is the Lagrange multiplier. The remaining con-
straints are on (B,S). Once (B,S) is fixed, the problem can
be reduce to a typical `1 minimization problem using a fixed-
point algorithm [15]. Alternatively, we can further fix N and
optimize E, and then fix E and optimize N . Therefore, we
solve the following three sub-problmes iteratively.

Sub-problem 1 Given (B,S,N ,Y , µ), optimize E.
This is equivalent to solve the following unconstrained opti-
mization program

argmin
E

λ

µ
‖E‖1 +

1

2

∥∥∥X(1) −E
∥∥∥2
F
, (7)

where X(1) is given by X(1) , D −BS −N + 1
µY . It is

well-known (see, e.g. [15]) that the unique optimal solution is
given by the shrinkage operator Sλµ−1

(
X(1)

)
, where

Sν(·) , sgn(·)max {| · | − ν, 0} , (8)

and sgn(·) is the sign function. We extend it to matrix domain
by applying it element-wise to all entries.

Sub-problem 2 Given (B,S,E,Y , µ), optimize N .
Similarly, this is equivalent to solve

argmin
N

τ

2
‖N‖2F +

µ

2

∥∥∥X(2) −N
∥∥∥2
F
, (9)

where X(2) , D −BS −E + 1
µY .

To obtain a closed-form solution, we take the derivative
of the objective function with respect to N and set it to zero.

τN + µ
(
N −X(2)

)
= 0. (10)

Hence, we get N = µ(τ + µ)−1X(2).
Sub-problem 3 Given (E,N ,Y , µ), optimize (B,S).

The original objective function is reduced to the following
form

argmin
B,S
‖S‖21,2 +

µ

2

∥∥∥X(3) −BS
∥∥∥2
F

subject to B ≥ 0, S ≥ 0, ‖Bj‖1 = 1 for j ∈ [k],

where X(3) , D −E −N + 1
µY .

We note that unlike the previous two sub-problems where
a closed-form optimal solution can be found, this problem is
more difficult as the objective function contains the bilinear
term BS. This is a dictionary learning problem with non-
negative constraints, or alternatively, a non-negative matrix
factorization problem with sparse regularizer. To make the
problem slightly simpler, we can solve the following problem
instead.

argmin
B,S
‖S‖21,2 + γ ‖B‖2F +

µ

2

∥∥∥X(3) −BS
∥∥∥2
F

subject to B ≥ 0, S ≥ 0, (11)

where the weight γ is used to strike a balance between the
norms of B and S. Let (B′,S′) be a solution of the above
optimizations, and define T ∈ Rk×k to be

T = diag
(
‖B1‖−11 , · · · , ‖Bk‖−11

)
. (12)

Then, the solution (B′T ,T−1S′) satisfies the sum-to-1 con-
straints. Moreover, B′T has the same `0-norm as B′, so the
modified solution is sparse as long as the original B′ is sparse.

The problem (11) was formulated and studied in [11],
where an efficient algorithm, called SNMF, was proposed
based on non-negative least squares. Empirically, we find that
SNMF provides sufficiently good solutions for sub-problem
3, and the algorithm is insensitive to the choice of γ. There-
fore, we fix γ to be a constant throughout our experiments.

Update Lagrange Multiplier The final step in each it-
eration is to update the Lagrange Multiplier Y . Let Y ←
Y + µ (D −BS −E −N), and update µ to be ρµ for a
constant ρ > 1.

5. EXPERIMENTS

5.1. Experimental settings

In this section, we evaluate the proposed topic-document
modeling algorithm for polarity classification. We use the
Movie Review dataset, which contains 1000 positive reviews
and 1000 negative reviews [16]. Therefore, it is a binary
classification task. To make a fair comparison, only unigram
feature (terms) is used, as it is difficult for traditional topic
models like Latent Dirichlet Allocation to incorporate oth-
er features such as part-of-speech tags, or bigram features.
Since terms with low document frequency (the number of
documents it occurs within a corpus) have little contribu-
tion to the topic words, we only keep the top m terms with
the highest document frequencies, and construct the TF·IDF
matrices accordingly.

Support vector machine (SVM) is used as the classifier for
all the subsequent tasks, since it has achieved the highest per-
formance in [16]. For simplicity, we use the linear SVM. The
performance accuracy will be evaluated using 5-fold cross-
validation using the 2000 samples.
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Our LDA Our LDA Our LDA
elizabeth (0.12723) elizabeth (0.00510) wedding (0.05833) sandler (0.00791) batman (0.06913) effects (0.00797)
queen (0.04298) foster (0.00449) singer (0.03481) wedding (0.00721) robin (0.02903) star (0.00713)
england (0.01782) giles (0.00277) julia (0.03362) dvd (0.00645) mr (0.01424) special (0.00637)
mary (0.01290) game (0.00264) adam (0.01425) series (0.00410) joel (0.01008) batman (0.00401)
rush (0.01159) anna (0.00263) romantic (0.01236) snake (0.00374) comic (0.00615) wars (0.00387)
love (0.01112) fight (0.00256) comedy (0.00833) singer (0.00366) wayne (0.00591) series (0.00326)
court (0.00971) video (0.00253) billy (0.00788) disc (0.00347) city (0.00583) planet (0.00265)
power (0.00900) eddie (0.00246) funny (0.00554) fans (0.00333) series (0.00557) trek (0.00245)
country (0.00864) king (0.00240) happy (0.00548) anaconda (0.00323) villains (0.00529) earth (0.00236)
political (0.00839) mortal (0.00237) steve (0.00546) x-files (0.00304) tim (0.00528) alien (0.00233)

Fig. 3. Comparison of topics learned using our method with LDA for similar topics (k = 30). The weight of each term is given
in the bracket.

# of topics (k) LDA Our method
30 57.2% 68.2%
50 61.3% 70.0%

Fig. 4. The classification accuracy on the Movie Review
dataset, using the distribution of topics information.

5.2. Verify the learned topic

In this experiment, we compare the polarity classification per-
formance of our topic modeling algorithm with LDA using
the distribution of topics information, i.e. we use Si ∈ Rk to
represent the i-th document. For LDA, we use the online L-
DA algorithm from [8] to learn the topics with default param-
eters. To ensure the convergence of online LDA, we pass the
corpus 200 times. The result is given in Fig 4. Geometrically,
the new features are given by projecting the original high-
dimensional features to a low-dimensional simplex. We can
see that the k-dimensional vector learned by our method sig-
nificantly outperformed the LDA counterpart, implying that
the learned information is semantically more meaningful. In
Fig 3, we provide examples of the learned topics compared to
LDA.

5.3. Classification using the structure information

The last experiments shows that the decomposed triple
(BS,E,N) is effective for classification. Recall that our
algorithm decompose the corpus D into BS + E + N ,
where BS contains the topic information, E represents
those document-specific keywords, and N is the remaining
residues. Our intuition is that the above three terms all con-
tain useful information and chould be weighed differently to
obtain better performance. To validate this hypothesis, we
simply concatenate the decomposed parts together, i.e. we
use the vector

[
(BSi)

T ,ET
i ,N

T
i

]
∈ R3m as the feature of

the i-th document, instead of Di ∈ Rm. If the structure of the
model does not help extract any additional information, we
should expect a performance drop, since the new dimension-

# of unigram feature m Di [(BSi)
T ,ET

i ,N
T
i ]

m = 2000 85.2% 87.0%
m = 3000 85.5% 87.2%

Fig. 5. Classification accuracy on the Moview Review dataset
using the original and new feature space.

ality of the new feature space is three times large. Or more
specifically, based on the classical statistical learning theory
(see, e.g. [17]), we know that

errtrue(h) ≤ errtrain(h) +

√
VC(H)(ln 2n

VC(H) + 1) + ln 4
δ

n
,

(13)

whree VC(H) indicates the VC-dimension of the hypothesis
space H . For linear classifier, the original feature space has
VC(H)= m + 1, and the new features space has VC(H ′)=
3m+1. For sufficiently large n, the second term of the right-
hand side of Eq (13) is about 1.73 times larger. The actual
performance of the two approaches is given in Fig 5. Clearly,
despite the fact that the new feature space is more prone to
over-fitting, the structure information does help to improve
the accuracy of classification.

Interestingly, although we have not done any special en-
gineering towards this task, we found that the performance is
on par with the best performance reported in [18], where a
much more sophisticated algorithm based on sentence-level
analysis and a subjectivity dataset was designed specifically
for the sentimental analysis.

6. CONCLUSION

In this paper, to address issues of previous topic models, we
proposed the noisy joint topic-document model and provide
an efficient iterative algorithm for topic modeling based on it.
The model is generic, we believe it can be used for document
classification, clustering, and beyond.
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