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ABSTRACT
OnlineL1-dictionary learning, introduced by Kasiviswanathan
et al. [1], is the process of generating a sequence of (dictio-
nary) matrices {At+1}, one at a time, for t = 0, 1, . . .. After
committing to At+1, a pair of matrices (Pt+1, Xt+1) is re-
vealed and the online algorithm incurs a cost of ‖Pt+1 −
At+1Xt+1‖1. The goal of the online algorithm is to ensure
that the total cost up to each time is not much larger than the
smallest total cost of any fixed A chosen with the benefit of
hindsight. In this paper, we study three different algorithms
for this problem based on the schemes of dual averaging,
projected gradient, and alternating direction method of mul-
tipliers. We focus on the performance of these algorithms for
the application of novel document detection, where online
dictionary learning could be used to automatically identify
emerging topics of discussion from a voluminous stream of
text documents in a scalable manner. Our empirical results
show the relative benefits of these three algorithms for this
application.

Index Terms- Dictionary Learning, Sparse Coding, On-
line Algorithms, Topic Detection

1. INTRODUCTION

In recent years, social media such as blogs and Twitter, are
challenging traditional media outlets with their fast-paced dis-
semination of breaking news stories [2, 3, 4]. Given the high
volume of online content generated, it is imperative to design
near-real time technologies to distinguish documents belong-
ing to novel topics from the background discussion. A docu-
ment arriving at time t is considered novel, if the topic con-
tained in the document is not already present in documents
arrived until time t − 1. Recently, Kasiviswanathan et al.
[5] proposed a dictionary learning framework for detecting
novel documents. Informally, the goal of dictionary learn-
ing is to find a dictionary matrix A ∈ Rm×k such that each
element pi from a set of signals [p1, . . . ,pn] ∈ Rm×n can
be well-approximated as a (sparse) linear combination of the
columns of A. Given a dictionary learning algorithm, we can
use it to detect novel documents as follows: letAt be a dictio-
nary that can well-approximate all the documents arrived until
time t − 1, for a new data document y arriving at time t, if
At can not well-approximate y then this indicates y is novel

compared to documents in the past. We use an L1-penalty
on the loss function as it is a good choice for detecting novel
documents [1]. This gives rise to an L1-dictionary learning
approach for novel document detection. The challenge then
is to generate the sequence of dictionary matrices A1, A2, . . .
in a scalable manner. A simple batch implementation is to
generate the dictionary At using all the documents till time
t − 1 [5]. However, this batch approach is computationally
infeasible as the optimization problems involved grow bigger
with t. To overcome this issue, Kasiviswanathan et al. [1]
proposed an online L1-dictionary learning algorithm (based
on the scheme of alternating directions method of multipliers)
for generating these dictionaries and showed that it leads to a
substantial speedup over the batch approach, without a loss of
performance in detecting novel documents. We review their
algorithm in Section 2.1.
Our Contributions. In this paper, we generalize the re-
sults of Kasiviswanathan et al. [1] by proposing a generic
framework for novel document detection based on online L1-
dictionary learning. We instantiate this framework by using
three algorithms for online L1-dictionary learning based on
the schemes of dual averaging [6], projected gradient [7], and
alternating direction method of multipliers [8, 1]. Through
extensive evaluation on two popular news-stream datasets,
we compare the performance of these algorithms in detect-
ing novel documents. Our experiments show that an online
algorithm based on dual averaging has the best predictive per-
formance and outperforms the alternating direction method
of multipliers based algorithm presented in [1]. On the other
hand, the algorithms based on projected gradient and alternat-
ing directions method of multipliers have some advantages
over the dual averaging based algorithm in terms of running
time and stability, respectively.
Notation. For a matrix M : M> is its transpose, sign(M) is
its sign matrix, ‖M‖1 =

∑
i,j |mij |, and ‖M‖2F =

∑
i,j m

2
ij .

Let A be a convex set defined as: A = {A ∈ Rm×k : A ≥
0, ∀j = 1, . . . , k , ‖Aj‖1 ≤ 1}, where Aj is the jth column
in A. Let ΠA denote the projection onto the nearest point in
A, i.e., ΠA(M) = argminA∈A ‖A −M‖2F . This projection
can be performed in near linear time [9].
Online Learning Model. In online learning an algorithm
generates a sequence of decisions xt+1 ∈ D one at a time
for t = 0, 1, . . . (where D is some domain). At time t+ 1, an
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unknown cost function gt+1 is revealed, and the algorithm
encounters a loss of gt+1(xt+1). At the end of any time
T , we define regret as the difference between the cumula-
tive cost of the algorithm (

∑T
t=0 gt+1(xt+1)) and the cost

associated with best fixed decision x ∈ D from hindsight
(minx∈D

∑T
t=0 gt+1(x)). The goal is to design algorithms

whose regret is sublinear in time T , since this implies that on
the average the algorithm performs as well as the best fixed
strategy in hindsight.

2. L1-DICTIONARY LEARNING

Dictionary learning concerns the problem of estimating a col-
lection of basis vectors over which a given data collection
can be accurately reconstructed, often with sparse encodings.
The dictionary learning considers a finite set of signals P =
[p1, . . . ,pn] ∈ Rm×n as input and optimizes the empirical
cost function f(A) =

∑n
i=1 `(pi, A), where `(·, ·) is some

loss function and A ∈ Rm×k is referred to as the dictionary.
In this paper, we follow the formulation from [5, 1, 10]

and use an L1-loss function with an L1-regularization term.
Kasiviswanathan et al. [1] have shown that in the context of
novel document detection, imposing an L1-loss results in a
better scheme than imposing an L2-loss as the L1-loss better
captures situations in text analysis where a term/phrase may
become suddenly dominant in a discussion.1 Therefore, for a
signal (document) pi, `(pi, A) = minx ‖pi−Ax‖1 +λ‖x‖1,
where λ is the regularization parameter. This (sparse coding)
formulation naturally takes into account both the error (with
the ‖pi − Ax‖1 term) and the complexity of the sparse de-
composition (with the ‖x‖1 term). Using this in f(A), we get
the following dictionary learning formulation

min
A,X

‖P −AX‖1 + λ‖X‖1. (1)

The matrix X is the coefficient matrix (also referred as the
sparse code matrix). To preventA from being arbitrarily large
(which would lead to arbitrarily small values of X), we add
a scaling constraint on A and require that each of its columns
have L1-norm less than equal to 1. In the novel document
detection application, the matrices P,A,X will contain the
associations between term-document, term-topic, and topic-
document, respectively. More precisely, each column of A
represents a topic and contains the contribution of the terms
to that topic and similarly each row of X represents a topic
and contains the contribution of the documents to that topic.
Therefore, for maintaining the interpretability of term-topic
and topic-document associations, we require A and X to be
non-negative (this is also known as non-negative matrix fac-
torization, [13]). These additions to (1) gives:

min
A∈A

f(A) = min
A∈A,X≥0

‖P −AX‖1 + λ‖X‖1. (2)

This problem is jointly non-convex in (A,X) and the standard

1Similarly, use of L1-loss have also led to more robust face recognition
algorithms [11, 12].

offline approach for solving it is to alternatively updateX and
A until some convergence criteria is met.

2.1. Online L1-Dictionary Learning

In this section, we define the online L1-dictionary learning
problem and provide algorithms for solving it.2 Since the opti-
mization problem in (2) is non-convex, it may not be possible
to design polynomial time offline algorithms to solve it with-
out making any assumptions (on either A or X). This also
means that it may not be possible to design a polynomial time
online algorithm with sublinear regret for (2) without making
any assumptions because that would imply a polynomial time
offline algorithm for solving (2). Therefore, we work with the
following relaxation of the problem, where the focus is to ob-
tain regret bounds for updating the dictionary, assuming that
the sparse code matrices are also part of the input.

Definition 1 (Online L1-Dictionary Learning (ODL) Prob-
lem [1]). 3 At time t = 0, 1, . . . , the online algorithm picks
At+1 ∈ A. Then, the nature reveals (Pt+1, Xt+1) with
Pt+1 ∈ Rm×n and Xt+1 ∈ Rk×n. The problem is to pick
the {At} sequence such that the following regret function is
minimized

T∑
t=0

‖Pt+1 −At+1Xt+1‖1 − min
A∈A

T∑
t=0

‖Pt+1 −AXt+1‖1.

The convexity of the cost function in the ODL problem
enables development of optimization-based algorithms for
obtaining sublinear regret. In this paper, we design three
different algorithms for the ODL problem based on: (i) dual
averaging scheme of Nesterov [6], (ii) projected gradient
scheme of Zinkevich [7], and (iii) online alternating direc-
tions scheme of Wang and Banerjee [8]. Theoretically, all
three algorithms achieve a regret of O(

√
T ) for the ODL

problem. However, as we show in Section 3.1, their practical
performances for the application of novel document detection
can vary quite widely. This happens because novel document
detection requires solving a non-convex problem (Equa-
tion (2)), and we do not have any guarantees on reaching a
global optima using (any of) the ODL algorithms. A detailed
discussion is deferred to the full version of this paper.

(1) Dual Averaging Scheme. Our first ODL algorithm (re-
ferred as the DA algorithm) is based on adapting Nes-
terov’s dual averaging scheme [6, 15]. 4 The dual averag-
ing scheme is based on a proximal function ψ : A → R as-
sumed to be 1-strongly convex with respect to some norm

2Rao and Porikli [14] define online dictionary learning in a different con-
text, where the goal is to dynamically adjust the dictionary size (k) to the
incoming data. Their algorithm does not have a regret guarantee and works
for the L2-loss.

3The setting considered in [1] is slightly more general. The techniques
developed in this paper also apply to that general setting.

4The dual averaging scheme is similar to the follow the perturbed leader
approaches developed in the online optimization [16] community, though the
specific approach that we use here is due to Nesterov [6].
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‖ · ‖. We use the standard quadratic proximal function
ψ(A) = (1/2)‖A‖2F . The DA algorithm makes a predic-
tion At+1 using the average subgradient till time t. More
concretely, the DA algorithm generates a sequence of iter-
ates {At, Ĝt}, whereAt ∈ A and Ĝt is the sum of subgra-
dients as defined below, using the following steps. At time
t, the algorithm computes the subgradient of ‖Pt−AXt‖1
evaluated at A = At. Let Gt denote this subgradient, Gt

equals
∂

∂A
‖Pt −AXt‖1

∣∣∣∣
A=At

= sign(AtXt − Pt)X
>
t ,

and then performs the updates Ĝt+1 = Ĝt +Gt and

At+1 = argminA∈A
1

t
〈Ĝt+1, A〉+

γ

2
√
t
‖A‖2F , (3)

where γ > 0 is a parameter to the algorithm. The At+1

has a closed-form update given by:
At+1 = ΠA(−Ĝt+1/(γ

√
t)).

The underlying intuition here is to pick At+1 to minimize
an averaged first-order approximation to the cost function,
while the second term in (3) enforce that the iterates not
oscillate wildly.

(2) Projected Gradient Scheme. Our next ODL algorithm
(referred as the PG algorithm) is based on the classical
projected gradient scheme of Zinkevich [7]. The gen-
eral idea of projected gradient scheme is to generate a
sequence of iterates by taking a descent step in the nega-
tive gradient direction and then project the result onto the
constraint set. More concretely, the PG algorithm at time
t performs the following update5

At+1 = ΠA (At − η ·Gt),

where η > 0 is the step size of the algorithm.

(3) Online Alternating Directions Scheme. Our last ODL
algorithm (referred as the ADMM algorithm) is based on
the scheme of alternating direction method of multipliers,
and was recently proposed by Kasiviswanathan et al. [1].
We give here a brief review of the algorithm from [1]. The
general idea of alternating directions method of multipli-
ers is to minimize the augmented Lagrangian function us-
ing a Gauss-Seidel type update of both the primal and dual
variables. Consider the following minimization problem
minA∈A ‖Pt − AXt‖1. We can rewrite this above mini-
mization problem as:

min
A∈A,Γ

‖Γ‖1 such that Γ = Pt −AXt. (4)

The augmented Lagrangian of this problem is:

‖Γ‖1 + 〈∆t, Pt −AXt − Γ〉+
α

2
‖Pt −AXt − Γ‖2F ,

where A ∈ A,Γ ∈ Rm×n are the primal variables and
∆ ∈ Rm×n is the dual variable. At time t, the algorithm

5A similar update step could also be derived by starting from the forward-
backward splitting algorithm of Duchi and Singer [17].

updates {Γt, At,∆t} as follows:

Γ̃t = Pt −AtXt,

Γt+1 = sign(Γ̃t + ∆t/α) ·max{|Γ̃t + ∆t/α| − 1/α, 0},

At+1 = ΠA

(
max

{
0, At +

(∆t/α+ Γ̃t − Γt+1)X>t
(2Ψmax(Xt))

})
,

∆t+1 = ∆t + α(Pt −At+1Xt − Γt+1),

where Ψmax(Xt) is the maximum eigenvalue of X>t Xt

and α > 0 is a parameter to the algorithm. At any timestep
t, the ADMM algorithm could violate the equality con-
straint in (4) (i.e., Γt+1 6= Pt−At+1Xt), but as shown by
Kasiviswanathan et al. [1] the equality constraint is satis-
fied on average in the long run (more formally, an O(

√
T )

regret can be established on the equality constraint viola-
tion, see [1] for more details).

3. NOVEL DOCUMENT DETECTION

Let {Pt : Pt ∈ Rm×n, t = 1, 2, 3, . . . } denote a sequence
of matrices where each column of Pt represents a document
arriving at time t.6 Each document is represented in the TF-
IDF vector space model [18], and we normalize Pt such that
each column (document) in Pt has a unit L1-norm. The
goal of novel document detection is to identify documents
(in Pt) that contains topics not present in the documents in
[P1| . . . |Pt−1].
Online Algorithm to Detect Novel Documents. We now
describe a generic mechanism that uses an ODL algorithm
A to detect novel documents. At each time step t, Mecha-
nism GENNVL alternates between a novel document detec-
tion and an online dictionary learning stage. The novel docu-
ment detection stage solves the sparse coding problem (with
the added constraint x ≥ 0) for each document in Pt. A
threshold ζ is used to mark a document as novel or non-novel.
The performance of this procedure depends on the ability of
the dictionary At to accurately reconstruct all the documents
in [P1| . . . |Pt−1], or in other words to accurately represent
all the term-topic associations contained in the documents
in [P1| . . . |Pt−1]. The dictionaries are generated using A.
Based on the choice of A, we get different instantiations of
this generic mechanism. We refer to instantiations of Mech-
anism GENNVL with the DA, PG, and ADMM algorithms as
DANVL, PGNVL, and ADMMNVL, respectively. Note that
the sequence of {Xt} and {At} matrices generated by these
algorithms could be quite different.

3.1. Experimental Results

In our experiments, we compare the performance of DANVL,
PGNVL, and ADMMNVL algorithms on two human-labeled

6For simplicity in exposition, we will assume m and n are independent of
t. This is without loss of generality as we can always zero-pad the matrices
appropriately.
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Fig. 1: AUC and execution time plots for the TDT2 and Reuters datasets.

Mechanism GENNVL: Generic Novel Document Detection
using an ODL Algorithm A

1: Input: Pt = [p1, . . . ,pn], At, λ, ζ
2: Novel Document Detection Stage:
3: For i = 1 to n do
4: If (minx≥0 ‖pi −Atx‖1 + λ‖x‖1 ≥ ζ)
5: Mark pi as novel
6: Dictionary Learning Stage:
7: Xt = minX≥0 ‖Pt −AtX‖1 + λ‖X‖1
8: Generate At+1 by using the ODL algorithm A

text datasets that are commonly used in topic modeling lit-
erature: TDT2 and Reuters. The TDT2 dataset consists of
a set of 9000 documents represented over 19528 terms, and
the Reuters dataset consists of a set of 8000 documents repre-
sented over 18933 terms.
Evaluation Metric. For performance evaluation, we assume
that documents in the corpus have been manually identified
with a set of topics. The true label of a document y arriving
at time t is novel if the (dominant) topic of y has not appeared
before the time t. The task of novel document detection is
to classify each document as either novel or non-novel. For
evaluating this classification task, we use the Area Under the
ROC Curve (AUC) [18].
Experimental Setup. All reported results are based on a Mat-
lab implementation running on a 2.5 GHz Intel processor with
8GB RAM. Sparse coding (Step 4 of Mechanism GENNVL)
problem is solved using an alternating directions method of
multipliers algorithm (refer [5] for more details). The regu-
larization parameter λ is set to 0.1 which yields reasonable
sparsities in our experiments. We introduce the documents
in groups. We initialize the dictionary using the first 1000
documents by alternatively repeating lines 7 and 8 of Mecha-
nism GENNVL 30 times (no evaluation is done here). In each
subsequent timestep, we evaluate the mechanism by provid-
ing it with the next set of 1000 documents, followed by dic-
tionary update.
Setting the Parameters and Sensitivity to them. The pa-
rameters of DANVL, PGNVL, and ADMMNVL are γ, η, and
α, respectively. In Figure 2, we examine performance of
these algorithms under various setting of their parameters.

On Y-axis we plot the average AUC (obtained by averag-
ing AUC’s over all timesteps). Notice that the performances
of both DANVL and PGNVL are quite sensitive to changes
in their respective parameter values, whereas performance of
ADMMNVL is much more robust to its parameter value. We
set γ = 4, η = 11, and α = 9 in our experiments based on
Figure 2.
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Fig. 2: Parameter sensitivity on TDT2 (k = 200).

Results on TDT2 and Reuters Datasets. Figure 1 shows
the performance of the algorithms on the TDT2 and Reuters
datasets. We treat the dictionary size (k) as a variable in these
plots and vary it from 100 to 500 in increments of 100. On
the AUC metric, DANVL outperforms the other two algo-
rithms (see, Figures 1(a) and 1(c)), e.g., on the TDT2 dataset
at k = 500, DANVL is 6.7% better than either PGNVL or
ADMMNVL. The performance of ADMMNVL has a smaller
variation with k than the other two algorithms and it performs
well when dictionary size is small (k = 100), whereas on the
other hand the performance of PGNVL improves with k.7

Running times of all the three algorithms increase with k
because of the increase in the cost of matrix multiplications
involved. Among the three algorithms, ADMMNVL is the
slowest, and its running time also increases at a faster rate as a
function of k. Both of the gradient-based algorithms DANVL
and PGNVL have similar run time profiles, with PGNVL be-
ing slightly faster than DANVL.
Conclusion. DANVL has the best predictive performance,
whereas PGNVL and ADMMNVL have some advantages in
terms of running time and parameter stability, respectively.

7Since Mechanism GENNVL performs only online update of the dictio-
naries, a larger k may not lead to a better AUC performance.
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