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ABSTRACT

Word usage is influenced by diverse factors, including topic, genre
and various speaker/author characteristics. To characterize these as-
pects of language, we introduce the “Multi-Factor Sparse Plus Low
Rank” exponential language model, which allows supervised joint
training of arbitrary overlapping factor-specific model components.
This flexible architecture has the advantage of being highly inter-
pretable. The elements of sparse parameter matrices can be viewed
as factor-dependent corrections (e.g. topic- or speaker-dependent
phenomena). In topic modeling experiments on conversational tele-
phone speech, we obtain modest perplexity reductions over an n-
gram baseline and demonstrate topic-dependent keyword extraction
that leads to a 13% (absolute) improvement in precision over TF-
IDF. We also show how keywords can be jointly learned for speak-
ers, roles and topics in a study of Supreme Court oral arguments.

Index Terms— Language modeling, sparse plus low rank de-
composition, topic models, keyword extraction

1. INTRODUCTION

The probabilities of word sequences in language are influenced by
numerous factors, such as topic, genre, formality, as well as the
role, intention and idiosyncrasies of the speaker/author. Further-
more, within a corpus, the scopes of these different influences will
vary; for example, in a collection of newswire text the discussion
of professional sports is likely to be concentrated in a subset of the
documents. These scopes of influence can also be arbitrarily over-
lapping, as would be the case if you have several speakers/authors
covering different sets of topics, or formal and informal examples
of language in the form of both written and spoken documents. For
example, in Fig. 1 (a), two influences are active at a given time: one
topic-dependent and one topic-independent (language-wide). In Fig.
1 (b), the model is more complicated, as the speaker, the court case
and the role of the speaker all augment language-wide factors in an
overlapping fashion.

In most language models (LMs), different sources of variation
are not explicitly accounted for. Instead, training data from differ-
ent sources are combined in a mixture model, e.g. [1, 2], or via
count merging, e.g. [3], or domain adaptation techniques are used
to leverage a general language model in the context of limited in-
domain training data [4, 5]. More recently, the impact of topic has
been explored using non-parametric Bayesian models, e.g. [6, 7, 8],
which use a Dirichlet (or other) prior in unsupervised learning of
latent topic variables. In [9], a similar approach is used with la-
tent variables for both topic and role. While most of this work has
focused on unigram language models for computational reasons, n-
gram variants of the non-parametric Bayesian topic model are de-
scribed in [10]. Despite their clear appeal, non-parametric Bayesian
approaches have not been widely adopted; they have a relatively
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Fig. 1. Two examples of overlapping scopes of influence: topic in
conversational telephone speech (a) and several factors in Supreme
Court transcripts (b).

high computational cost and their non-parametric nature makes them
somewhat more difficult to interpret.

We propose an alternative approach for characterizing different
sources of variation in language: a Multi-Factor Sparse + Low Rank
(SLR) exponential language model. At the base of the model is a
low rank component that, as in [11], induces continuous representa-
tions of words and histories to get a smooth model capturing general
syntactic-semantic language behavior. Added to that in the parame-
ter space are arbitrarily many factor-dependent sparse components,
each specializing in some phenomenon (e.g. capturing the idiosyn-
crasies of a speaker or topic) which may overlap in different ways
with other factors. By regularizing these components to be sparse,
we emphasize the most salient differences and discourage overfit-
ting. In this light, each of the factor-dependent components can be
seen as an additive correction to a global model. The model provides
a flexible framework for adaptation to a new domain: depending on
the nature and the extent of the mismatch, some factors can be up-
dated, some kept intact, and others thrown out entirely.

A key feature of our language model is its interpretability: the
elements of the sparse factor-dependent components correspond to
keywords that represent salient factor-dependent differences. Un-
like past work leveraging topic in exponential models [5, 12], iden-
tifying topic-related n-gram keywords is a byproduct; no separate
pre-processing step is used to find them. Further, topic characteris-
tics can be learned jointly with other factors such as genre, speaker,
or speaker role. With multiple factors accounted for, the keywords
are more meaningful. We explore the use of the learned keywords
for topic summarization, and show that they can be used to identify
salient characteristics of speaker roles and idiosyncrasies of individ-
ual speakers. In contrast to [13], where a sparse plus low rank de-
composition of word-document matrices was shown to be effective
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at identifying document keywords, we need no stop word filtering
and support arbitrarily many overlapping factors.

2. SPARSE + LOW RANK LM REVIEW

Here we briefly review the SLR language model before discussing
extensions in Sec. 3. The SLR-LM extends the standard maximum
entropy exponential language model by reparameterizing the model
weights and using regularization to produce a novel weight structure.
The conditional probability P (x|h) (word given history) is defined
to be

P (x|h) =
exp

(
ψ(x)T (L+ S)φ(h)

)∑
x′ exp (ψ(x′)T (L+ S)φ(h))

, (1)

where ψ(x) ∈ Rdψ and φ(h) ∈ Rdφ are feature functions that map
words x and histories h, respectively, to some (typically sparse, high-
dimensional) feature representation, such as n-gram indicators used
here: unigram for x and orders n− 1 and lower for h. φ(h) also has
an always-on “0-length” feature, which allows the model to include
unigram probabilities. Two matrices, L and S, form the weights
of the model. In contrast to the standard maximum entropy model,
where the probabilities are determined by a log-linear function of
a feature vector and weight vector, the SLR-LM uses a log-bilinear
function. As noted in [11], if S = 0 then the SLR-LM can be viewed
as a convex, feature-based version of the model termed simply the
“log-bilinear model” that uses an explicitly factored matrix with a
particular structure [14].

The first component is a low rank matrix, L, which has the effect
of inducing continuous low-dimensional representations of words
and histories, and is effective at exploiting the similarities that ex-
ist between words and between histories. This interpretation can be
seen by noting that if L has rank r, then

ψ(x)TLφ(h) = ψ(x)TUΣV Tφ(h) (2)

=
(
UTψ(x)

)T
Σ
(
V Tφ(h)

)
(3)

= ψ̃(x)T Σφ̃(h) (4)

Here UΣV T is the compact singular value decomposition of L, and
UT and V T have the effect of projecting ψ(x) and φ(h) down to
continuous, r-dimensional representations. As with other continu-
ous language models, this provides a very natural form of smoothing:
words that function similarly will be projected near to each other in
this low-dimensional representation, naturally pooling information
between words to more robustly estimate probabilities.

While the low rank component is effective at identifying and ex-
ploiting similarities that exist in the data, not all sequential language
fits into regular patterns. Some n-grams are more frequent than the
component words suggest (e.g. “taco bell” is more frequent than
one’s knowledge of tacos and bells would predict). Other n-grams
are less frequent than the individual words would suggest (e.g. de-
spite the general similarity between “really” and “very,” the n-gram
“really much” is not commonly used like “very much”). Rather than
burden the low rank component, which excels at finding similari-
ties, with these exceptions, we add a sparse component, S, that pro-
vides corrections as needed. In [11], we learned several distinct types
of exceptional n-grams in the sparse component, including names,
topic n-grams, and common multiword expressions.

3. THE MULTI-FACTOR SPARSE + LOW RANK LM

In the new Multi-Factor SLR-LM, the monolithic sparse component
is replaced with a variable number of factor-dependent sparse com-
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Fig. 2. A binary “scope” matrix K defining which sparse com-
ponents (rows) are active in which segments of the document
(columns). This key corresponds to the example in Fig. 1 (b).

ponents. At any given point in the document, only a subset of all
sparse components will be “active.” In the example of Fig. 1 (a),
each n-gram will be associated with a set of three matrices: the
(general) low rank component L, the (general) sparse component
S0, and a topic-dependent sparse component St. The low rank L ex-
ists to capture topic-independent linguistic regularities as before; the
general sparse S0 captures topic-independent exceptions (e.g. genre
artifacts like “yeah yeah” or common place names like “new york”);
the topic-dependent sparse matrices St capture topical exceptions
(e.g. “black lab” and “pure bred” for the topic “Pets”).

Let Ci denote the set of components active at word token xi in
the document. We refer to the set of word tokens xi (and correspond-
ing histories hi) that have the same set Ci of active components as a
“segment”; for example, in Fig. 1 (a) there are five segments, while
in Fig. 1 (b) there are fourteen. Let C(t) denote the shared set Ci
for all word tokens xi in segment t; i.e., Ci = C(t) for all word to-
kens i in segment t. The sets C(t) can be equivalently represented
in a binary “scope” matrix, K. The rows of K correspond to the
sparse components in the model, while the columns correspond to
segments. Fig. 2 shows the scope matrix for the Supreme Court ex-
ample of Fig. 1 (b), with sparse components for each speaker, for
each case, as well as a sparse component for “justices” and one for
“advocates.” Then the set C(t) is just the set of rows {j : Kjt = 1}.

The Multi-Factor LM thus consists of a general low rank L, a
general sparse S0, and C additional sparse components (e.g. the
other rows in Fig. 2). The average log likelihood L of the full dataset
X (with N word tokens) is

L(X ;L, S0, S1, . . . , SC) =
1

N

N∑
i=1

logPCi(xi|hi), (5)

PCi(x|h) =
exp

(
ψ(x)T (L+

∑
c∈Ci Sc)φ(h)

)
∑

x′ exp
(
ψ(x′)T (L+

∑
c∈Ci Sc)φ(h)

) . (6)

Training involves solving a convex optimization problem:

min
L,S0,...,SC

(
γ0‖L‖∗ +

C∑
c=0

γ1c‖Sc‖1 (7)

+
γ2
2
‖L+

C∑
c=0

Sc‖2F − L(X ;L, S0, . . . , SC)

)
.

The nuclear norm, ‖ · ‖∗, is the sum of singular values and is a
convex relaxation of rank. We can solve this problem using a mod-
ified accelerated proximal gradient descent algorithm, a variant of
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the algorithms in [11, 15]; the key difference is that sparsifying line
searches are performed in parallel for all sparse components, instead
of a single sparse component. Due to the fact that proximal operator
for all of the sparse matrices decomposes over individual matrices,
the same convergence guarantees apply. We assume that the differ-
ent sparse components cover different subsets of the data; otherwise,
the solution may not be unique.

The training algorithm requires computing the gradient of the
smooth part of the objective (the last two terms) with respect to each
problem variable. These gradients can be computed efficiently in
one pass over the data. Let ∇AtL denote the gradient of average
log-likelihood with respect to the sum At = L+

∑
c∈C(t) Sc, then

∇AtL = EP̂ (x,h)[ψ(x)φ(h)T ]− EPCt
[ψ(x)φ(h)T ] (8)

where P̂ is the unnormalized empirical joint distribution of words
and histories occurring in segment t. (P̂ sums to the number of
words in segment t over the number of words in the corpus.) PCt
is similarly unnormalized. Then, the gradients of the smooth part of
the objective with respect to the sparse components, Sc, are simply

∇Scfsmooth =
∑

{t:Kct=1}

∇AtL+ γ2(L+

C∑
j=0

Sj). (9)

That is, one can do a single pass from t = 1, . . . , T and accumulate
each of the∇Scfsmooth along the way.

4. EXPERIMENTS AND DISCUSSION

We conducted several experiments to measure the Multi-Factor LM,
including its performance in terms of perplexity with joint train-
ing and adaption scenarios and in terms of the quality of keywords
learned in the sparse components. The first set of experiments uses
the Fisher corpus of conversational telephone speech; the second set
uses a corpus of Supreme Court transcripts.

4.1. Conversational Speech

The Fisher corpus consists of telephone conversations between
strangers on 40 pre-assigned topics. We split (by conversation) each
topic into training, development and test sets, yielding 5.5M word
tokens of training data, 1.9M word tokens of development data, and
2.0M word tokens of test data. Our language model vocabulary con-
sists of the most frequent 9.7K word tokens appearing in the training
set (all out-of-vocabulary words are mapped to a dedicated OOV
token). Due to our motivation to analyze the exceptions learned,
we restrict ourselves to bigram language models in all experiments,
which are sufficient for most topical keywords.

4.1.1. Topic-Dependent Language Model

We first consider the joint training case, where our training data con-
sists of the first 20 Fisher topics, split by topic, and we evaluate
test set perplexities on each of the same 20 topics; specifically, we
report the average test set perplexity over all 20 topics. Using a
Multi-Factor LM with sparse component topology analogous to that
in Fig. 1 (a) (but with 20 topics) we trained a joint model on the
training set. Parameters γ0, γ1c and γ2 were tuned using coarse grid
search on the development set (for simplicity we set γ1c equal for all
c). The model we use to compute perplexity on test set topic t is the
matched topic-dependent model with parameters L+ S0 + St.

mKN Multi-Factor LM L+ S0

Joint Training 81.5 79.7 93.1
Adaptation 84.6 83.3 98.9

Table 1. Jointly trained and adapted test set perplexities, averaged
over topics 1-20 (joint) or topics 21-40 (adaptation).

We also consider another common scenario: the training data
and evaluation data have some type of mismatch; specifically, we
consider topic mismatch. Our training data consists of the same
first 20 topics of the Fisher data used before, while we treat each
of the next 20 topics (21-40) as new domains. We adapt our Multi-
Factor LM to new test topic t′ as follows: 1) from the model trained
in Sec. 4.1.1, we keep general L and S0, but discard all training
topic-specific models St, 2) we parameterize the adapted model with
weights L+S0 +St′ , and 3) we estimate the new St′ by solving the
following convex adaptation optimization problem

min
St′

γ1‖St′‖1 +
γ2
2
‖St′‖2F − L(Xt′ ;L, S0, St′) (10)

This is solved by a straightforward variant of the proximal gradient
algorithm employed used for training the Multi-Factor LM. There
are a few points to note about adaptation. First, the low rank L and
general sparse S0 components are preserved, which assumes that
they are capturing topic-independent information; this is a reason-
able assumption in our case because topic-dependent n-grams ended
up in the various St, by design. Second, the adapted models are
learned independently from other new topics, rather than jointly. Fi-
nally, the adaptation problem is significantly faster than the original
model training, because no low rank component is being learned.

As a baseline we compare against an n-gram model with
modified-Kneser-Ney (mKN) smoothing; to evaluate topic t we
linearly interpolate a general model (trained on the first 20 topics)
with a topic-dependent model trained only on topic t’s data using
the SRILM toolkit [16]. (We found linear interpolation to perform
better than count merging for this task.) In the “Joint case,” the
topic training data is accounted for in the general model, and in the
“Adaptation case” it is not. The results are presented in Table 1. In
perplexity, the Multi-Factor SLR-LM performs similarly to the base-
line, slightly edging the modified-Kneser-Ney interpolated models
by 2%. In the last column we see that the perplexities using models
parameterized by L + S0 only (i.e. omitting the topic-dependent
factors) are much worse, suggesting that the topic-dependent factors
play a prominent role in capturing the language behavior.

4.1.2. Keyword Extraction

Apart from its role as a language model, the Multi-Factor SLR-LM is
of interest for its ability to identifying keywords associated with the
factors. Specifically, the sparse entries of the St components contain
the corrections to the general model for the factor-specific case; that
is, they distill out the key differences between general and factor-
dependent language. Here we evaluate the quality of this method of
keyword extraction; to measure quality, we collect the highest rated
30 entries in each of the 20 sparse components learning and have
them annotated as topically-relevant or not. Recall that our “key-
words” can be any order of n-gram; because our model in Sec. 4.1.1
is a bigram, the keywords learned here are unigrams and bigrams.

We compare against two other keyword extraction methods,
which each make use of a special word-document matrix (techni-
cally n-gram-topic matrix - the rows are all bigrams and unigrams
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Fig. 3. Percentage of keywords labeled as relevant, for the Multi-
Factor, TF-IDF and Mutual Information methods. Results averaged
over 20 topics and two annotators.

“Life Partners” “Minimum Wage”
MF LM soul mate, problem solving, food stamps, minimum,

physical attraction flipping burgers
TF-IDF life partner, partner, five fifteen, wage,

life partners minimum wage
MI married, life, wage, minimum,

important minimum wage

Table 2. Top three topic keywords learned from the data.

observed in the data and the columns are the 20 topics). The first
baseline reweights the matrix using the standard term-frequency
inverse-document-frequency (TF-IDF) scheme; after reweighting,
the largest 30 entries in each column are used as the keywords. In
our second baseline, inspired by feature selection, we use mutual
information (MI) between the features (n-grams) and the topics
(binary one-vs-rest) to rank the features per topic; the top 30 largest
n-grams per topic after stop word filtering are selected as keywords.
(In contrast, the Multi-Factor and TF-IDF methods did not require
any stop word filtering.)

The keywords from all three methods were combined, with order
randomized, and labeled as clearly-topically-relevant or not by two
annotators unaffiliated with this research. Fig. 3 plots the percent-
age of keywords that were rated as clearly-relevant (average over 20
topics and two annotators), in three bins: the top 10 rated keywords
per topic, keywords 11-20, and keywords 21-30. While the Multi-
Factor model has the highest percentage of relevant keywords at each
level, the biggest gains are due to the quality of keywords decaying
more slowly in Multi-Factor model than the other baselines. Over
all bins, the 62% of the keywords learned by the Multi-Factor model
are good, compared to 49% for the TF-IDF method and 31% for the
mutual information approach. Some examples of the top keywords
by method are listed in Table 2.

4.2. Supreme Court Transcripts

We also explore the use of a Multi-Factor model with overlapping
factors configuration as shown in Fig. 1 (b). For these experiments
we use a subset of the Supreme Court corpus1 consisting of 20 court
cases, with 207k words, 58 speakers and two “roles” (justice and
advocate). The vocabulary size is 7.3k. Examples of important key-
words identified for specific cases include:

1www.oyez.org

1. Rush Prudential HMO, Inc. v. Moran. An HMO deny-
ing a request to cover a surgery: “savings clause,” “medical
necessity,” “h m,” “m o,” “pilot life.”

2. TRW v. Andrews. Allegations of violating the Fair Credit
Reporting Act: “equitable estoppel,” “reporting agency,”
“misrepresentation exception,” “liability arises.”

3. Harris v. United States. Regarding the sale of illegal nar-
cotics while carrying an unconcealed firearm: “mandatory
minimum,” “reasonable doubt,” “seven years.”

4. Toyota Motor Mfg v. Williams. A claim of assembly line
work leading to carpal tunnel syndrome: “worker’s compen-
sation,” “assembly line,” “life activity.”

The model also learned characteristic language associated with
the roles of justice, including question words (“why,” “how,”) and
confirmations structured as statements (“you’re saying,” “your
view,” “I thought”), and advocate, including deferential language
(“your honor,” “chief justice,” “that’s correct”) and hedging (“I
think”). The per-speaker factors are most reliable for justices, for
whom the data covers several cases. In this, we captured speaker
idiosyncrasies (e.g. Breyer’s habit of starting sentences with “all
right” and Scalia’s disfluencies) and Rehnquist’s expressions that
are characteristic of the role of Chief Justice (e.g. “we’ll hear,”
”minutes remaining,” ”is submitted”).

5. DISCUSSION

In summary, we introduced a multi-factor exponential language
model that allows supervised learning of overlapping factors that
influence sequential language behavior. As a language model, the
model provides only small gains in perplexity in a topic adaptation
scenario compared to a baseline modified-Kneser-Ney that inter-
polates general and topic specific models. It is perhaps of greater
interest as a mechanism to identify factor-dependent characteristics.
In particular, the n-gram elements encoded in sparse parameter ma-
trices give an intuitive way to identify factor-dependent keyword
phrases. On a conversational speech task, we demonstrate that hu-
man raters prefer topic keywords learned by the multi-factor model
over TF-IDF and mutual information baselines. With Supreme
Court transcripts, we show qualitatively the ability to learn factor-
dependent keywords for different court cases, roles (justice vs advo-
cate), and speakers. In addition to summarization, identification of
keyword phrases is of interest for feature selection, learning lexical
items, and detecting new or anomalous events. Encoding words with
other features (e.g. morphological structure, syntactic dependents)
would also make it possible to identify other types of idiosyncratic
phenomena.
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