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ABSTRACT

This paper addresses the problem of semantic entity resolution
(SER), which aims to determine whether some or none of the enti-
ties in a knowledge base is mentioned in a given web document. The
lexical features, e.g., words and phrases, which are critical to the
resolution of the semantic entities are typically of a small amount
compared to all lexical features in the web document, and therefore
can be modeled as sparse signals. Two techniques leveraging the
principles of sparse signal recovery are proposed to identify the
sparse, salient lexical features: one technique, based on the Lasso
algorithm with the ℓ2-norm distance metric, attempts to recover
all the salient lexical features at once; the other technique, namely
Posterior Probability Pursuit (PPP), sequentially identifies salient
features one after one using the negative log posterior probability as
the distance metric. Using a knowledge base consisting of about 100
million entities, we show that the proposed techniques exploiting
the sparsity nature underlying SER deliver substantial performance
improvement over baseline methods without sparsity considera-
tion, demonstrating the potentials of sparse signal techniques in
entity-centric web information processing.

Index Terms— Sparse signal recovery, semantic entity resolu-
tion, posterior probability pursuit, Lasso

1. INTRODUCTION

The area of sparse signal recovery has received much research at-
tention in the past several decades [1–4]. The underlying problem
is to recover a sparse signal, whose vector representation has only
a small number of nonzero entries, based on as few measurements
as possible. This problem has driven the advancements of a wide
spectrum of applications such as compressed sensing [5, 6], medi-
cal imaging [7], face recognition [8], robust regression [9], speech
coding [10], body area networks [11], echo cancellation [12], and
wireless communication [13, 14].

The vastness and variety of the information available on the web
has recently provided an unprecedented opportunity for the theo-
ries and algorithms of sparse signal recovery in advancing web-scale
information processing applications. Different from traditional ap-
plications of sparse signal techniques in which the signals of inter-
est are usually real or complex vectors, web information possesses
various forms of signals, with texts being the most common. Ac-
cordingly, tackling web information requires proper transformation
of the discrete signals such as texts into representations that sparse
signal techniques can handle, and typical techniques for parame-
terizing text documents into vector representations [15] include the
term-document matrix [16–18] as well as the language model [19].
Kasiviswanathan et al. [16] applied the technique for sparse sig-
nal recovery to detect emerging topic in streaming user-generated
contents. If a document can find a sparse representation using a
large collection of previous documents, the topic of the document
is not novel. If, however, a sparse representation cannot be obtained,
the document is very likely to be focusing on a newly emerging

topic that has not been covered by the pool of existing documents.
In [17], Min et al. utilizes a low-rank and sparse matrix decom-
position technique to decompose the background topics from key-
words on a set of documents. The topical background shared across
multiple documents is modeled by a low-rank matrix, whereas the
keywords specifically related to each individual document is cap-
tured by a sparse matrix, where the sparsity results from the small
amount of keywords compared with abundant background informa-
tion. Agarwal and Gurevich [18] applied the idea of sparsification
to re-parameterize a set of documents with sparser vector-space rep-
resentation so that the top-k retrieval can be efficiently implemented
in the proposed recommendation system. Hutchinson et al. [19] pro-
posed a novel maximum entropy language model that decomposes
the model parameters into a low rank component that learns regular-
ities in the training data and a sparse component that learns excep-
tions, and showed that the proposed model effectively reduces the
perplexity. With the application of face detection, Le et al. [20] pro-
posed a large scale unsupervised learning approach to building high
level, class-specific feature detectors, where the sparsity constraint
is employed to effectively ensure the desired model structure.

This paper studies the problem of semantic entity resolution
(SER), whose goal is to determine whether some or none of enti-
ties in a knowledge base is mentioned in a given web document.
Successful solutions to the SER problem build an important step
to enabling novel user experiences in web information retrieval
and data mining. Previous research [21–25] studied the problem
of resolving entity mentions against knowledge bases. The main
difficulty originates from the fact that an entity can have multi-
ple surface forms while different entities can share a same surface
form. This many-to-many relationship leads to an inherent semantic
ambiguity. To address this problem, for instance, Mihalcea and
Csomai [26] considered a knowledge-based approach which com-
putes the contextual overlap between the entity definitions and the
words to disambiguate, and also an approach that adopts features
including part-of-speech, local contexts with specified locations,
among others. Cucerzan [27] proposed an approach to solve the
named entity disambiguation problem using the Wikipedia knowl-
edge base. Using a vector space model, the system maximizes the
agreement between each of the mentions and the document in terms
of contextual information as well as all pairwise agreements between
mentions in terms of category information. Han and Sun [28] em-
ploys a generative entity-mention model for linking entity mentions
to a knowledge base, which can incorporate the prior popularity
of entities, name variations, and knowledge base entries. A Naive
Bayes classifier is used with the generative model to determine the
best matching entity in the knowledge base.

Note that existing approaches for entity resolution use either all
the lexical features in a web document [29] or the lexical features
within a window from the entity mentions [26] to resolve the se-
mantics. Empirically, however, only a few lexical features in a doc-
ument turn out to be most critical to the resolution of entity men-
tions, whereas the rest large amount of lexical features are language
components either less important or completely unrelated to resolv-
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ing entity mentions. The small amount of salient lexical features
critical to SER can be modeled as sparse signals. We propose two
different approaches, both rooted in sparse signal recovery, to iden-
tify and thus directly utilize the sparse salient features for SER. The
first approach is based on the Lasso algorithm, which attempts to
jointly determine all sparse salient features at once. The second
approach, namely Posterior Probability Pursuit (PPP), sequentially
identifies the salient features one after one. More importantly, PPP
employs the negative log posterior probability as the distance met-
ric, in contrast to the popular ℓ2-norm widely used in sparse sig-
nal recovery. We perform an experiment using an entity knowledge
consisting of about 100 million people entities. The preliminary
results demonstrate that the proposed sparse signal recovery tech-
niques have strong potentials to improve SER performance. Further,
the posterior probability is a more suitable metric than the ℓ2-norm
in the entity-centric web information processing task.

2. SEMANTIC ENTITY RESOLUTION

2.1. Problem Formulation

Let E denote an entity knowledge base. For each entity e ∈ E , the
information is represented in the form of attribute-value pairs. Let ae

denote an attribute of e, and ve denote the corresponding value of at-
tribute ae. For example, for a people entity e, ae may be the attribute
“gender”, and ve can be “male” as the value of the attribute. In this
paper, we assume all values are text-based, although the values can
take on other forms such as image, audio, or video. Using this rep-
resentation, an entity e in the knowledge base can be characterized
by {(a(k)

e , v
(k)
e )}rk=1, where r is the number of attribute-value pairs

available for entity e. For a given web document D, the goal is to
determine an entity e ∈ E so that D mentions e in its content. If no
such entity exists, we claim that D mentions an entity that is outside
of E , or simply an unknown entity.

It is common to apply proper heuristics to confine the search
space to a set of entities that are most likely to contain the corre-
sponding entity. For instance, an inverted index can be exploited to
retrieve a set of entities which have at least certain feature overlap
with the document [15]. Suppose we can obtain such a confined
entity set, denoted by Ec with Ec ⊆ E , which is typically a much
smaller subset of the original entity knowledge base E .

2.2. Lexical Features

We utilize lexical features to perform semantic entity resolution. All
the (text-based) values (i.e., ve’s) in the knowledge base serve as
the source of potential lexical features. We adopt a bag of words
and phrases model, in which a lexical feature can be either a word
or a phrase, where the latter can naturally preserve the dependency
across words. To build such a model, we need to systematically
harvest phrases from the text-based values of an entity. Two ap-
proaches for phrase discovery are adopted. The first approach relies
on the observation that some attribute ae usually takes a phrase as its
value ve. For example, in the LinkedIn knowledge base, attributes
such as “university attended”, “degree earned”, and “job title” typ-
ically have values which are by themselves phrases, e.g., “Univer-
sity of California, San Francisco”, “Master of Science”, and “se-
nior hardware engineer”, respectively. In this case, the value ve as
a whole can be treated as a reasonable phrase. An attribute-value
pair in the Wikipedia Infobox is another example of this type of
source of phrases. The second approach for phrase discovery re-
quires considerable effort since it extracts phrases from values with
free-style texts, such as the main text body of a Wikipedia entry, a de-
tailed review of an restaurant on Yelp, and a summary of a persons’s
professional experiences on LinkedIn. The phrases are extracted

through the application of a statistical language model, namely a
phrase LM, which models phrase boundaries as partially observable
variables [30]. A phrase segmentation is a set of contiguous phrases
which together constitute a particular free-style text. Using a phrase
LM, optimal phrase segmentations can be found through dynamic
programming. The details are omitted due to the scope of the paper.

2.3. Sparsity Nature in Entity Resolution

The fundamental assumption which motivates this work is that the
salient lexical features that are critical to the resolution of the entity
mention is of a small amount, and hence sparse, compared with all
lexical features of the web document. As an example, let us examine
the following text.

“By acclamation, Michael Jordan is the greatest basketball
player of all time. Although, a summary of his basketball career and
influence on the game inevitably fails to do it justice, as a phenom-
enal athlete with a unique combination of fundamental soundness,
grace, speed, power, artistry, improvisational ability and an un-
quenchable competitive desire, Jordan single-handedly redefined
the NBA superstar.”

A reader would have little difficulty in recognizing that the
Michael Jordan mentioned above is the well-known NBA basket-
ball player. The salient lexical features leading to the resolution
are most likely “Michael Jordan”, “basketball”, “NBA”, and “su-
perstar”. The rest of the lexical components are either language
components which are merely related to the entity (e.g., “a summary
of”, “a unique combination of”), or features that are less critical (and
more ambiguous) once the most salient features are identified (e.g.,
“speed”, “power”, “artistry”, “inevitably fails to do it justice”). The
salient lexical features that can uniquely determine the entity are
actually surrounded by the lexical components that are less useful
for disambiguating the semantics, and are therefore sparse. Mean-
while, although the knowledge base can provide a comprehensive
coverage of the information pertaining to an entity, a web document
may only mention some, usually not all, of the attributes of the
entity. In this example, lexical features such as “Chicago Bulls” in
Michael Jordan’s knowledge entry (e.g., Wikipedia) do not appear.
Therefore, rather than considering all lexical components available
in the text, we should focus on the sparse salient lexical features
whose joint presence suffices to uniquely resolve the entity ambigu-
ity. The fertile area of sparse signal recovery offers useful tools for
taking advantage of the sparsity nature underlying semantic entity
resolution. Next, we explore two approaches for SER, both of which
are motivated by popular sparse signal recovery techniques.

2.4. Lasso-Based Semantic Entity Resolution

We begin with a preparatory setup. Denote byHe the set of phrases
discovered for an entity e ∈ Ec. For each phrase h ∈ He for an
entity e ∈ Ec, we compose a column vector ch ∈ Rn to represent
the phrase h as follows. The length of ch, i.e., n, is equal to the
number of unique words and phrases available for the entities in Ec.
The locations of the nonzero elements of ch are determined in the
following manner. If h is a single word, i.e., a degenerate phrase
of length-1, then ch has only one nonzero entry located at the cor-
responding location of the word h. If h is a phrase with q unique
words where q > 1, then there are (q + 1) nonzero entries in ch,
where q of the nonzero entries correspond to the q unique words, re-
spectively, and the one extra nonzero entry corresponds to the phrase
as a whole. The values on these locations are the tf-idf weights de-
rived from the bag of words and phrases model. All other locations
have zero elements. In this formulation, the phrase both in its en-
tirety as well as its individual components find respective weights
in ch. Therefore, this formulation can confirm the occurrence of the
phrase, and meanwhile has the ability to handle partial phrase match.
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Next, we form a matrix C ∈ Rn×m with each column ch encoding
a phrase h for an entity in Ec, in total m unique phrases. To keep
track of the mapping between the entity e and the columns of C that
correspond to e’s phrases, we define Ie as the set of column indices
corresponding to the phrases of entity e. Using the same vocabulary,
we build a vector d to parameterize D. Note that a lookup table can
be used to determine the lexical features appeared in D.

To see how the formulation can incorporate with the sparsity na-
ture of SER discussed in Section 2.3, let us assume that D describes
an entity e ∈ Ec. Ideally, a subset of the columns indexed by Ie
in C, corresponding to e’s phrases which appear in D, should be
highly correlated with d. The other columns of C, which corre-
spond to other entities or unmentioned aspects of e, may be merely
correlated or completely uncorrelated with d. Hence, we can model
the correlation between the columns of C and the web document d
using the following linear model

d = Cx+ n (1)

where x ∈ Rm, and n ∈ Rn. Note that if xi ̸= 0, then d is cor-
related with ci, which means that the web document D contains the
phrase which is encoded in the column i and belongs to some en-
tity e, where i ∈ Ie. If xi = 0, then d is unrelated to column ci,
which indicates phrase encoded in ci does not appear or mostly irrel-
evant in the web document. Based on the sparsity nature discussed
in Section 2.3, we assume that x is a sparse vector, which means
most of the entries are zeros indicating no correlation between the
document and the corresponding phrases. The sparse vector x, es-
pecially its nonzero entries, contains critical information about the
most discriminative lexical features in the web document which can
help determine the entity. The vector n is used to model the noise,
which absorbs the difference between the assumed model and the ac-
tual observed web document. To find x, we leverage the idea behind
the Lasso algorithm [31] and solve

x̂ = arg min
x∈Rm

+

∥d− Cx∥22 + λ∥x∥1 (2)

where λ > 0 is the regularization parameter, and Rm
+ denote the m-

dimensional real space with nonnegative coefficients. We only focus
on the x with nonnegative elements, since a negative coefficient does
not permit an intuitive interpretation on the usage of the correspond-
ing phrase. Note that the first term in (2) measures the quality of
approximating the web document d using the ℓ2-norm distance, and
the second term encourages a sparse x̂ to be learned.

The remaining task is to determine which entity is mentioned in
D, or there is no such entity in Ec. To this end, an additional step is
required to process the resultant x̂. We adopt the following criterion.
First, we find the entity e∗ as the maximizer to

max
e∈Ec

dᵀCx̂Ie

∥d∥2 · ∥Cx̂Ie∥2
≡ r∗

where xI denotes the vector by setting all entries of x to zero except
those indexed by the elements in I. As a result, the phrases asso-
ciated with the entity e∗ can best approximate the web document
measured by the cosine similarity defined in the Euclidean space.
Next, we claim e∗ is the entity mentioned in D if r∗ ≥ γ, where
γ ≥ 0 is a pre-defined parameter. Claim that there is no entity in Ec
mentioned in D, i.e., an unknown entity, if r∗ < γ.

Note that once we formulate a matrix C as the parametrization
of the knowledge base and transform the web document D into a
vector d, many sparse signal recovery techniques apply immediately
to finding x̂ according to the linear model (1), leading to a family of
algorithms for SER using sparse signal recovery techniques.

2.5. Posterior Probability Pursuit

The techniques for sparse signal recovery commonly employ the ℓ2-
norm distance as the metric of fitting quality [2, 31–33]. Note that
the Bayesian formulations have proven effective for web information
processing tasks [34]. In this section, we design a novel approach,
namely Posterior Probability Pursuit (PPP), which equips with the
negative log posterior probability as the distance metric, meanwhile
taking advantage of the sparsity nature underlying this task by lever-
aging the ideas behind the sequential recovery algorithms [2, 4, 32].

We start with a preparatory setup. We formally define an un-
known entity to represent any entity outside of the knowledge base,
which is denoted by eu. Let Fe denote the set of lexical features,
including words and phrases, for entity e. For an entity e ∈ E , we
define P(f |e) as the probability of seeing the feature f in the feature
setFe. A typical approach for estimating P(f |e) is to apply the max-
imum likelihood estimate, which translates into the frequency of the
occurrence of f in Fe. A smoothing method can be applied to im-
prove the estimation [35]. For eu, we define P(f |eu) , |{e:f∈Fe}|

|E|
for f ∈ ∪e∈EFe, which means that the probability of encountering
feature f for an unknown entity is approximated as the probability
of seeing f in the feature set of a random entity from the knowledge
base. Let G be the set of lexical features found from the document
D against the confined entity set Ec.

With this setup, we present the PPP algorithm below.

Parameters: t ∈ (0, 1);K,M ∈ N.
Initialization: F0 = ∅, k = 1.
Step 1. Let

fk = arg min
g∈G\Fk−1

[
min
e∈Ec

− logP(e|Fk−1 ∪ {g})
]
(⋆)

Step 2. Set Fk = Fk−1 ∪ {fk}.
Step 3. Check the following termination criteria:

(1) maxe∈Ec P(e|Fk) > t. (2) G\Fk = ∅. (3) k = K.
If any termination criterion is met, go to Step 4.
Otherwise, set k ← k + 1, and go to Step 1.

Step 4. Output: ê = argmine∈Ec∪{eu}− logP(e|Fk) as the
entity mentioned in D.

Note that to compute (⋆), we use the following equations according
to the Bayes rule and the conditional independence assumption

P(e|F) = P(F|e)P(e)∑
e′∈Ec∪{eu} P(F|e′)p(e′)

where

P(e) =
1

M + |Ec|
, e ∈ Ec, P(eu) =

M

M + |Ec|

P(F|e) =
∏
f∈F

p(f |e), e ∈ Ec ∪ {eu}.

The essence of the PPP algorithm is to find the best fit of an en-
tity’s semantics using a sparse set of lexical features from the web
document where the fitting quality is measured by the posterior prob-
ability. To identify the sparse salient lexical features, PPP adopts the
sequential selection principle, which is widely employed in match-
ing pursuit algorithms [2, 32], to augment the set of salient features
over a number of iterations. Particularly, in Step 1 of each iteration,
the most discriminative and yet unselected lexical feature is found
to maximally decrease the negative log posterior probability, which
measures the agreement between an entity and the features selected
from the web document thus far. By enforcing an early termination,
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PPP encourages only a small amount of salient features to be sequen-
tially selected for resolving the semantics, which echoes the sparsity
nature underlying SER.

3. EXPERIMENT

We evaluate the proposed approaches for semantic entity resolution
via the application of people entity resolution, where the goal is to
determine whether some or none of the people entities in the knowl-
edge base is mentioned in a given web document. The experimental
setups are introduced as follows.

The knowledge base is built upon the information we crawled
from a popular online social network. It contains the profiles of
about 100 million unique people entities. Each profile employs the
attribute-value pair representation to store various aspects of infor-
mation about a person.

We randomly select 50 names from the people entity knowledge
base. Using each selected name as a query, we obtain the top 20 re-
sults in the search engine result page via a commercial search engine.
Then, the following types of web pages are manually removed: (i)
Directory page. A web document of this kind usually mentions many
different people entities with the same or similar names. (Common
domains include http://pipl.com and http://www.spokeo.com.) (ii)
Password-protected page. (iii) Web pages directly from the social
network which are used to build our entity knowledge base. In total,
we obtain 555 web documents for the 50 names. Note for each web
document D, the people entities with the name which is used as the
query to retrieve D comprise the confined entity set Ec. We manu-
ally determine for each web document the matching entity in Ec, or
claim that an unknown entity is mentioned.

We employ two baseline approaches for comparison, both based
on the lexical features as discovered in Section 2.2. (i) Cosine simi-
larity with tf-idf weights (tf-idf). The vector space representation of
the web document and the people entity profiles are formed using
the tf-idf weights. The cosine similarity is calculated to determine
the best matching people entity. A threshold on the similarity is pre-
set to determine the unknown people entity. This baseline method
represents the lexical-features-based algorithmic component applied
across a series of entity disambiguation techniques [21, 22, 29]. (ii)
Naive Bayes (NB). A Naive Bayes classifier with the additional un-
known entity is constructed. The people entity with the maximum
posterior probability is claimed as mentioned in the web document.
A pre-defined parameter is the total number of unknown population
M , which equivalently specifies the prior probabilities of the enti-
ties. This baseline method essentially reproduces the state-of-the-
art technique developed in [28] without the name variation model,
which is learned with information beyond lexical features.

Define the following auxiliary quantities:
n1 : the number of documents which the algorithm correctly

determines the matching people entity in the knowledge base.
n2 : the number of documents which the algorithm determines

as mentioning some people entity in the knowledge base.
n3 : the number of documents which has a matching people

entity in the knowledge base, where n3 = 185 in this experiment.
Then, we define the performance metrics as

precision = n1/n2, recall = n1/n3.

For the Lasso based approach, there are extensive discussion on
the parameter λ [36]. An empirically choice is of the form λ =
α∥Cᵀd∥∞, where α = 0.01 is a popular choice [37–39]. For PPP
and NB, the parameter M , interpreted as the total amount of out-of-
knowledge-base entities, determines the prior probabilities of all en-
tities, which is difficult to estimate [40,41] and is beyond the scope of
this paper. In order to fully understand the precision-recall tradeoff,
we adopt a proper parameter grid (either one- or two-dimensional)

and run the algorithm on all operating points. The performance
tradeoffs are given in Fig.1. Note that for algorithm with more than
one parameter, we only plot the best performance tradeoffs.

Fig. 1. Performance tradeoffs of algorithms. The parameter grids
are as follows (step-sizes are omitted). tf-idf: threshold from 0 to 1.
Lasso: α from 10−3 to 0.2, γ from 0 to 1. NB: M from 103 to 1015.
PPP: t from 0.85 to 1− 10−12, M from 103 to 1015, K = 20.

First, we compare the performance between tf-idf and the Lasso
based approaches, since they both use ℓ2-norm based metrics. The
difference is that while the tf-idf approach uses all the lexical fea-
tures, the Lasso based approach only uses a sparse subset of lexical
features. Clearly, the Lasso based approach delivers substantially
improved precision over the tf-idf baseline at any given recall.

Next, we compare NB and PPP, since they both utilize the pos-
terior probability as the metric. To enable thorough inspection, we
detail their performances in the Table 1.

PPP NB
M t0 1 3 5 7 9 11

108
P 0.62 0.76 0.82 0.87 0.87 0.87 0.83
R 0.79 0.78 0.77 0.76 0.73 0.73 0.70

1010
P 0.77 0.86 0.93 0.94 0.94 0.96 0.96
R 0.66 0.65 0.65 0.63 0.62 0.62 0.58

1012
P 0.87 0.95 0.97 0.97 0.99 0.99 0.99
R 0.57 0.56 0.54 0.52 0.52 0.52 0.48

1014
P 0.96 0.98 0.98 1 1 1 1
R 0.47 0.44 0.44 0.43 0.43 0.42 0.38

Table 1. Comparison between PPP and NB. For PPP, t = 1−10−t0 .

We can see from Table 1 that varying the parameters M and t
in PPP leads to a tradeoff between precision (P) and recall (R). Note
that for a fixed M , NB can be viewed as a special case of PPP by
using all the lexical features, which can be algorithmically achieved
by setting t = 1 (or, t0 = ∞) and K = ∞ in PPP. From the P-
R scores in boldface, PPP can substantially improve the recall by
7% ∼ 13%, at precisions no lower than its NB counterpart when t is
close to, but surely less than, one. Therefore, properly exploiting the
sparsity nature enables the potential for performance improvement.

Overall, the PPP algorithm achieves the best precision-recall
tradeoff among the techniques. Further, the techniques using pos-
terior probability to measure the fitting quality substantially outper-
forms the techniques using ℓ2-norm based metrics, which indicates
that the posterior probability is a more suitable metric for the entity-
centric web information processing task.
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