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ABSTRACT

This paper quantifies the value of pronunciation lexicons in large
vocabulary continuous speech recognition (LVCSR) systems that
support keyword search (KWS) in low resource languages. State-
of-the-art LVCSR and KWS systems are developed for conver-
sational telephone speech in Tagalog, and the baseline lexicon is
augmented via three different grapheme-to-phoneme models that
yield increasing coverage of a large Tagalog word-list. It is demon-
strated that while the increased lexical coverage — or reduced
out-of-vocabulary (OOV) rate — leads to only modest (ca 1%-4%)
improvements in word error rate, the concomitant improvements in
actual term weighted value are as much as 60%. It is also shown
that incorporating the augmented lexicons into the LVCSR system
before indexing speech is superior to using them post facto, e.g., for
approximate phonetic matching of OOV keywords in pre-indexed
lattices. These results underscore the disproportionate importance of
automatic lexicon augmentation for KWS in morphologically rich
languages, and advocate for using them early in the LVCSR stage.

Index Terms— Speech Recognition, Keyword Search, Informa-
tion Retrieval, Morphology, Speech Synthesis

1. LOW-RESOURCE KEYWORD SEARCH

Thanks in part to the falling costs of storage and transmission, large
volumes of speech such as oral history archives [1, 2] and on-line
lectures [3, 4] are now easily accessible by large user populations
via the world wide web. Unlike the text-web, however, search-
ing speech using keywords continues to be a challenging problem.
Manually transcribing the speech is often prohibitively expensive.
Automatic keyword search (KWS) systems are able to address the
problem in some cases, but not in others, because high performance
KWS systems, in turn, rely on underlying large vocabulary contin-
uous speech recognition (LVCSR) systems that are also expensive
to develop. Good LVCSR systems utilize statistical acoustic- and
language-models trained from large quantities of transcribed speech
and “conversational” text in the search domain, and manually crafted
pronunciation lexicons with good coverage of the collection.

We are interested in improving KWS performance in a low re-
source setting, i.e. where some resources are available to develop
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an LVCSR system — such as 10 hours of transcribed speech cor-
responding to about 100K words of transcribed text, and a pronun-
ciation lexicon that covers the words in the training data — but ac-
curacy is sufficiently low that considerable improvement in KWS
performance is necessary before the system is usable for searching a
speech collection.

A fair amount of past research has been devoted to improving
the acoustic models from un-transcribed speech [5, 6, 7, 8, 9], and to
adapt language models trained from out-of-domain text to the task at
hand. Such methods of improving the LVCSR performance, which
subsequently improve KWS performance, are not a focus of this pa-
per. We investigate the role of the pronunciation lexicon in KWS
systems.

The importance of pronunciation lexicons for LVCSR is not en-
tirely underestimated. Several papers have addressed the problem
of automatically generating pronunciations for out of vocabulary
(OOV) words [10, 11] in order to improve LVCSR accuracy. But
once a reasonably large lexicon is available, speech transcripts in
most languages have a fairly small (1%-4%) OOV rate [12, 13].
Even when the OOV rate is reduced by lexicon augmentation, the
former OOVs are often absent from the LVCSR transcript, due to
poor triphone coverage or low LM probabilities. The impact of lexi-
con expansion on LVCSR accuracy, therefore, is usually very small.

Two notable exceptions to this conventional wisdom are (i) ac-
curacy on infrequent, content-bearing words, which are more likely
to be OOV, and (ii) accuracy in morphologically rich languages, e.g.
Czech and Turkish. These exceptions come together in a detrimental
fashion when developing KWS systems for a morphologically rich,
low resource language such as Tagalog. This is the setting in which
we will quantify the impact of increasing lexical coverage on the
performance of a KWS system.

We assume a transcribed corpus of 10 hours of Tagalog con-
versational telephone speech [14], along with a 5.7K word pronun-
ciation lexicon that covers all words seen in the transcripts, as our
primary acoustic model (AM) training corpus. We assume that the
language model (LM) training corpus is either just the transcripts
(74K words), or a larger corpus of 595K words.

We first develop state-of-the-art LVCSR and KWS systems
based on the given resources. We process and index a 10 hour
search collection using the KWS system, and measure KWS perfor-
mance using a set of 355 Tagalog queries.

We then explore three different methods for augmenting the
5.7K word lexicon to include additional words seen in the larger LM
training corpus. The augmented lexicons are used to improve the
KWS system in two different ways: reprocessing the speech with
the larger lexicon, or using it during keyword search.

The efficacy of the augmented lexicons is measured in terms of
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their impact on KWS performance, not just on LVCSR accuracy.
We find that even though lexicon augmentation results in only

modest reductions in word error rate (WER), the concomitant im-
provement in actual term weighted value (ATWV) is often dramati-
cally higher, particularly if the augmented lexicon is used in an early
stage to generate the speech lattices used for indexing and search.

The remainder of the paper is organized as follows. We describe
our core LVCSR and KWS systems in Section 2, and the three lex-
icon augmentation methods in Section 3. The impact of augmented
lexicons on LVCSR is reported in Section 4 and on KWS in Section
5. The main claims are reiterated in Section 6.

2. BASELINE LVCSR AND KWS SYSTEMS

We conduct our investigations using the IARPA Babel Program
Tagalog language collection release babel106-v0.2f. We use a
10 hour subset of the 80 hours of conversational telephone speech
in this corpus, the transcriptions of this subset, and a pronunciation
lexicon restricted to cover only these transcriptions, to simulate low
resource conditions. The Babel Tagalog collection also sets aside 10
hours of conversational telephone speech for development-testing.
We use a 1.5 hour subset of this development-test set for LVCSR
system tuning, e.g. acoustic and language model selection, and refer
to it as the “dev” set. The entire 10 hour development-test set, which
we refer to as the “eval” set, is used for KWS evaluation1. We use
a list of 355 keywords (actually, key phrases) created by and shared
among the Babel program participants.

2.1. Kaldi-based LVCSR System Description

Our LVCSR system is built using the Kaldi tools [15]. We use stan-
dard PLP analysis to extract 13 dimensional acoustic features, and
follow a typical maximum likelihood acoustic training recipe, begin-
ning with a flat-start initialization of context-independent phonetic
HMMs, and ending with speaker adaptive training (SAT) of state-
clustered triphone HMMs with GMM output densities. This is fol-
lowed by the training of a universal background model from speaker-
transformed training data, which is then used to train a subspace
Gaussian mixture model (SGMM) for the HMM emission probabil-
ities. Finally, all the training speech is decoded using the SGMM
system, and boosted maximum mutual information (BMMI) train-
ing of the SGMM parameters is performed.

Two different language models trained with the SRI LM tools
[16] are used in the experiments reported below: a trigram LM esti-
mated from the transcripts of the 10 hour acoustic training data (ca
74K words), and a larger trigram LM estimated from the transcripts
of the entire 80 hour Babel corpus (ca 595K words). The LMs are
estimated separately for each decoding lexicon, so that their vocab-
ulary, the probability of unseen words, etc. match decoding condi-
tions.

The Kaldi decoder generates word lattices [17] for the eval data
using the GMM+SAT, SGMM and SGMM+BMMI models. The de-
coding lexicon is varied systematically, from the low resource lex-
icon of 5.7K words (8.9K pronunciations), through automatically
augmented lexicons of three different sizes, to the full Babel refer-
ence lexicon of 23K words (35K pronunciations). Decoding is per-
formed with the small as well as the large LM to create contrastive
sets of lattices. A matrix of word error rates is thus measured on the
dev set for 3 AMs × 5 lexicons × 2 LMs.

1The LVCSR dev set is a part of the KWS eval set. We believe that any
minor over-fitting that may result from this inclusion has negligible effect on
KWS performance on the eval set.

2.2. OpenFST-based KWS System Description

Lattices generated by the BMMI models are processed using the lat-
tice indexing technique described in [18]. The lattices of all the utter-
ances in the eval set are converted from individual finite state trans-
ducers (FST) output by Kaldi to a single generalized factor trans-
ducer structure in which the start-time, end-time and lattice poste-
rior probability of each word token in every lattice is stored as a
3-dimensional cost associated with that instance of the word. This
factor transducer is, in essence, an inverted index of all word se-
quences seen in the collection of eval set lattices, and permits further
manipulation easily using the Google OpenFST tools [19]. Inter-
ested readers are referred to [18] for details.

Given a keyword or phrase, one creates a simple finite state ma-
chine that accepts the keyword/phrase and composes it with the fac-
tor transducer to obtain all occurrences of the keyword/phrase in the
eval set lattices, along with the conversation ID, start- and end-time
and lattice posterior probability of each occurrence.

All putative instance of a keyword thus obtained are sorted ac-
cording to their posterior probabilities. Furthermore, a YES/NO de-
cision is assigned to each instance using the method proposed by
[20]. Specifically, for each keyword, its expected count in the eval
set is estimated by summing the posterior probabilities of all its pu-
tative hits, and a decision threshold that maximizes the expected
term weighted value is computed for each keyword. All keyword
instances with posterior probabilities above this keyword-specific
threshold are marked YES.

Finally, the collection of all proposed keyword hits is evalu-
ated against the ground truth using the NIST 2006 Spoken Term
Detection evaluation protocol to compute the so called actual term
weighted value (ATWV).

2.3. Utilizing Larger Lexicons for KWS

A limitation of the word based indexing scheme described above is
that only words present in the LVCSR lexicon appear in the factor
transducer. If a word in the query phrase is OOV relative to the lex-
icon, it will not be found by the FST composition step described
above. And yet, the LVCSR vocabulary in low resource settings is
often quite small, and the possibility that a query is OOV can be
quite large. E.g. the Tagalog baseline vocabulary comprises only
5.7K words, and of the 355 phrasal queries provided for KWS sys-
tem development, 25% contain at least one OOV relative to this vo-
cabulary.

However, if a large word list is provided, over and above the
acoustic training transcripts, a number of techniques are available to
generate pronunciations for them, and mitigate the possibility that a
keyword is OOV.

A key goal of this paper is to quantify the value of such lexicon
augmentation to the KWS application, specifically to the improve-
ment in ATWV from having a larger lexicon. Now, there are (at
least) two ways in which one may utilize an augmented lexicon.

1. If the augmented lexicon is available before the speech is pro-
cessed/indexed, one may incorporate it into the LVCSR stage.
The lattices produced, and thus the factor transducer gen-
erated for search, will then contain the newly added words
wherever there is sufficient evidence for them in the speech.

2. An alternative to decoding all the speech with an augmented
lexicon, which is sometimes inconvenient or impossible, is to
use it during keyword search.
Specifically, if K represents a finite state acceptor for a
keyword that is OOV relative to a baseline lexicon L1, but
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in-vocabulary relative to an augmented lexicon L2, where
both L1 and L2 are finite state transducers that accept phone
sequences and output words, and if E is an “edit-distance”
transducer that maps any phone sequence to any other phone
sequence with a cost equal to their Levenshtein distance, then

K′ = Project
`
ShortestPath

`
(L∗1)

−1 ◦ E ◦ (L∗2) ◦K
´´

represents the in-vocabulary keyword/phrase K′ that is clos-
est to K. One may use K′ as a proxy for K to search lattices
generated using L1.

We investigate these two methods of utilizing an augmented lexicon
L2 for handling keywords that are OOV relative to the decoding lex-
icon L1 of the low resource KWS system. We demonstrate that the
first way is the preferred way to use an augmented lexicon.

3. THREE LEXICON EXPANSION METHODS

We next describe the five lexicons L1-L5 used for generating lattices
for indexation and search. L1 (5.7K words) and L5 (23K words)
were manually created, while L2-L4 use different grapheme-to-
phoneme (G2P) methods to cover progressively larger subsets of the
17K words in L5 that are OOV relative to L1.

L1: The 5.7K reference lexicon contains 5.7K words (8.9K pro-
nunciations), and serves as our baseline lexicon.

L2: The Povey lexicon, developed for automatically augmenting
English lexicons in WSJ-like settings, is able to cumulatively
provide pronunciations for 6.6K of the 17K OOV words.

L3: The Yarowsky lexicon was developed with an explicit notion
of morphology. It is able to automatically generate pronunci-
ations for 7.3K of the 17K OOV words.

L4: The Sequitur lexicon, based on [21], was developed as a direct
statistical grapheme-to-phoneme model. It is able to cover all
17K OOV words.

L5: The 23K reference lexicon contains 23K words (35K pronun-
ciations), and is our most accurate lexicon.

The three G2P methods and their accuracies are summarized below.
Key Remark: The methods vary in their ability to cover the

same set of 17K OOV words, naturally yielding different-sized lex-
icons. But comparing different G2P methods is not a goal of this
paper, only the value of larger lexicons. Therefore, we do not trim
the lexicons to be of equal size. Details of the methods are similarly
not germane to the paper, and are omitted due to page restrictions.

3.1. The Povey Lexicon

This lexicon augmentation method, originally designed for En-
glish, operates by splitting the OOV into potential prefixes and
suffixes, finding the best possible match for the resulting stem-affix
pair in the 5.7K reference lexicon, and stitching together a pro-
nunciation from fragments of the matching lexicon entries. E.g.,
if the reference lexicon contains the entries beat ≡ /b i t/,
beatable ≡ /b i t 6 b l/ and bear ≡ /b E r/, and the
word bearable is OOV, then it notes that bearable and bear
differ in the suffix -able, just as beatable and beat do. Since
the pronunciations of beatable and beat differ by the suffix /6
b l/, it generates bearable ≡ /b E r 6 b l/.

This lexicon covers 6.6K of the 17K OOVs (39%). Of the many
pronunciations produced for each word, at least one exactly matches
an entire reference pronunciation for 5.4K of those words (81%).

3.2. The Yarowsky Lexicon

Our second method for lexicon augmentation is based on a novel
model of synchronous word ≡ /pronunciation/ transduc-
tion which utilizes all existing entries in a pronunciation lexicon
to generate new candidate word/pronunciation pairs. For example,
in Tagalog, the method learns that the prefix transduction mag-
↔i- of a word stem is accompanied — with probability 0.96 —
by a synchronous prefix transduction /m 6 g/-↔ /? i/- of its
pronunciation. This facilitates generation of a pronunciation for an
OOV word such as magtuturo from the pronunciation of the word
ituturo, which is present in the 5.7K reference lexicon. Addi-
tional evidence for the pronunciation of magtuturo also obtains
from the synchronous transduction of the word suffixes -turo ↔
-ro and the corresponding pronunciation suffixes -/t u r o ?/
↔ -/r ?/, and 76 other observed morphological phenomena,
with a consensus probability of 0.98 for the correct pronunciation
magtuturo ≡ /m 6 g t u t u r o ?/.

The algorithm requires as input only a reference lexicon, from
which it infers a set of globally-optimized, performance-weighted
set of synchronous prefix and suffix transductions. Post hoc inspec-
tion confirms that these transductions correspond to regular morpho-
logical affixations, allophonic substitutions, and variable-length pre-
fixal and suffixal “rhymes.”

This lexicon covers 7.3K of the 17K OOVs (44%). Of the many
pronunciations produced for each word, at least one exactly matches
an entire reference pronunciation for 6.4K of those words (88%).

3.3. The Sequitur Lexicon

The third method of lexicon augmentation may be formalized as
finding the most probable sequence of phonemes (under a source-
channel model) given the sequence of graphemes. This method is
implemented in the Sequitur G2P software, and is well described in
[21]. We recapitulate it briefly for completeness.

The method uses so-called joint-multigram models, i.e. align-
ments between consecutive n graphemes (n ≥ 0) and m phonemes
(m ≥ 0). Contrary to the usual practice, where these alignments are
hand-crafted, the Sequitur determines them automatically during the
training phase from the input lexicon.

There are two hyper-parameters available to control the size and
coverage of the augmented lexicon, namely V , the maximum num-
ber of pronunciation variants, and Q, the cumulative probability of
all the generated pronunciations for a given OOV word. Multiple
pronunciations are generated for a given OOV, in decreasing order
of probability, until one of these targets is reached. To choose the
best values of these two hyperparameters, we use the goodness cri-
terion

Goodness(V, Q) = NC − k|NG −NR|,
where NG is the number of pronunciations variants generated at the
given V and Q, NC is the number of correct pronunciations among
the NG, and NR is the number of reference pronunciations. The
weight k controls over-generation. We set k = 0.5, and find the
optimal hyperparameters to be V = 2 and Q = 0.8.

This lexicon covers all 17K OOVs (100%). Of the many pro-
nunciations produced for each word, at least one exactly matches an
entire reference pronunciation for 12K of those words (75%).

4. LVCSR IMPROVEMENT BY LEXICON EXPANSION

We perform LVCSR evaluations on the 1.5 hour dev set, and evaluate
WERs for three sets of acoustic models, two language models and
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Lexicon L1 L2 L3 L4 L5

Words 5.7K 12K 13K 23K 23K
Pronunciations 8.9K 21K 24K 39K 35K

GMM+SAT acoustic models
3gram LM 74K 74.9 75.6 73.2 73.1 72.9
3gram LM 595K 73.4 74.8 72.0 71.3 71.0

SGMM acoustic models
3gram LM 74K 71.6 70.4 70.1 69.4 68.8
3gram LM 595K 69.3 68.7 68.2 67.4 66.4

SGMM+BMMI acoustic models
3gram LM 74K 71.1 70.1 69.8 68.9 68.5
3gram LM 595K 68.9 68.2 67.4 67.0 66.2

Table 1. WER (%) for 5 lexicons × 3 AMs × 2 LMs.

five different lexicons. They are reported in Table 1.
Note that small but consistent reductions in WER result from

augmenting either the lexicon or the LM alone, and reductions from
lexicon and LM augmentation are additive. Note also that the gains
persist even as the acoustic models improve, demonstrating further
complementarity of the three LVCSR components.

5. KWS IMPROVEMENT BY LEXICON EXPANSION

We perform KWS on the lattices produced by the BMMI acoustic
models using the OpenFST-based technique summarized in Subsec-
tion 2.2 above.

To quantify the impact of using the augmented lexicons in the
LVCSR stage of the KWS system, we index and search the lattices
corresponding to all ten SGMM+BMMI systems in the bottom block
of Table 1. For instance, the ATWV for the 5.7K reference lexicon
and 74K word LM is obtained by using the lattices whose WER is
71.1%, ATWV for augmenting the lexicon via the Yarowsky method
and using the 595K word LM is obtained by using the lattices whose
WER is 67.4%, etc. The resulting ATWVs for 355 queries are re-
ported in Table 2, where we also provide a breakdown of the ATWV
between 87 OOV queries relative to the 5.7K reference lexicon, and
268 queries that are in-vocabulary.

Since OOV queries have no chance to be found in word lattices
generated using the 5.7K lexicon, the gains in Table 2 may appear to
be trivial to explain. To rule out this trivial explanation, we also in-
vestigate utilizing the augmented lexicon to generate in-vocabulary
proxies for OOV queries, as described in Subsection 2.3. We con-
struct the factor transducer from lattices generated using the 5.7K
lexicon, but each time we encounter an OOV word in a query K,
we use the method described in Subsection 2.3 to search the fac-
tor transducer2 using proxy in-vocabulary queries K′. The result-
ing ATWVs, again broken down between in-vocabulary and OOV
queries, are reported in Table 3.

6. DISCUSSION AND CONCLUSION

Several interesting conclusions may be drawn from the three tables
presented above.

Begin by comparing the last line in Table 1, where relative WER
improvement is 4% (68.9%→ 66.2%), with the last line in Table 2,

2We have noticed that when a proxy K′ returns an unusually large number
of YES’s for an OOV keyword K, they are predominantly false alarms, and
hurt KWS performance, perhaps because K′ is a frequent phrase. So we
simply discard all hits due to high-yield proxies, be they true or false alarms.

Lexicon L1 L2 L3 L4 L5

Words 5.7K 12K 13K 23K 23K

SGMM+BMMI acoustic models × 3gram LM 74K
In-Voc queries 0.253 0.271 0.269 0.276 0.273

OOV queries 0.000 0.163 0.262 0.373 0.388
All queries 0.191 0.244 0.267 0.300 0.301

SGMM+BMMI acoustic models × 3gram LM 595K
In-Voc queries 0.277 0.287 0.304 0.320 0.320

OOV queries 0.000 0.138 0.294 0.405 0.416
All queries 0.209 0.250 0.302 0.341 0.343

Table 2. ATWV for in-vocabulary (268), OOV (87) and all (355)
queries, when the augmented lexicon is used in LVCSR.

Lexicon L1 L2 L3 L4 L5

Words 5.7K 12K 13K 23K 23K

SGMM+BMMI acoustic models × 3gram LM 74K
In-Voc queries 0.253 0.253 0.253 0.253 0.253

OOV queries 0.000 0.010 0.063 0.045 0.065
All queries 0.191 0.194 0.206 0.202 0.207

SGMM+BMMI acoustic models × 3gram LM 595K
In-Voc queries 0.277 0.277 0.277 0.277 0.277

OOV queries 0.000 0.025 0.035 0.046 0.036
All queries 0.209 0.215 0.217 0.220 0.218

Table 3. ATWV for in-vocabulary (268), OOV (87) and all (355)
queries, when the augmented lexicon is used in a pre-indexed KWS
system to create proxy queries K′ for OOV queries K.

where ATWV improves 64% (0.209 → 0.343). This demonstrates
that lexicon augmentation has significantly greater impact on KWS
performance than LVCSR.

Next, compare the first column for the BMMI acoustic models in
Table 1 with the first column of the two “All queries” lines in Table
2. The WER improves by 3% relative (71.1% → 68.9%) in Table
1, but the ATWV improves by only 9% (0.191 → 0.209) in Table
2. This demonstrates that not all WER reductions are equal: errors
reduced by lexicon augmentation matter more for KWS than errors
reduced by improving the LM.

Next, compare the two “All queries” lines in Table 2, and note
that ATWV improves due lexicon augmentation from 0.191 to 0.301
(58%) for the small LM, compared to 0.209 to 0.343 (64%) for the
larger LM. This demonstrates that the KWS improvements from lex-
icon augmentation are persistent even after LM improvements.

Next, compare the last lines in Tables 2 and 3, and note that
ATWV improves in the former by 64%, but only 4% in the latter.
This demonstrates that utilizing the augmented lexicon in the KWS
stage via approximate phonetic matching (Table 3) is much less ef-
fective than utilizing them in the LVCSR stage (Table 2).

Finally, compare the ATWVs for in-vocabulary and OOV
queries in Table 2 to note that while much of the improvement
from lexicon augmentation is on keywords that were previously
OOV, there is significant (10%-15%) collateral improvement in
detecting in-vocabulary keywords as well.

We hope that these results convince readers that this paper not
only quantifies the significant benefits of lexicon augmentation for
KWS, but also provides meaningful insights into the way in which
KWS performance is improved.
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