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ABSTRACT

We present a two-stage model-based approach for unsupervised
query-by-example spoken term detection (STD) without any anno-
tated data. Compared to the prevailing DTW approaches for the
unsupervised STD task, HMMs used by model-based approaches
can better capture the signal distributions and time trajectories of
speech with a more global view of the spoken archive; matching
with model states also significantly reduces the computational load.
The utterances in the spoken archive are first offline decoded into
acoustic patterns automatically discovered in an unsupervised way
from the spoken archive. In the first stage, we propose a document
state matching (DSM) approach, where query frames are matched
to the HMM state sequences for the spoken documents. In this
process, a novel duration-constrained Viterbi (DC-Vite) algorithm is
proposed to avoid unrealistic speaking rate distortion. In the second
stage, pseudo relevant/irrelevant examples retrieved from the first
stage are respectively used to construct query/anti-query HMMs.
Each spoken term hypothesis is then rescored with the likelihood
ratio to these two HMMs. Experimental results show an absolute
11.8% of mean average precision improvement with a more than
50% reduction in computation time compared to the segmental
DTW approach on a Mandarin broadcast news corpus.

Index Terms— Unsupervised spoken term detection, zero-
resource, query-by-example, speech pattern discovery

1. INTRODUCTION

The fast growing quantity of video and audio content over the In-
ternet demands efficient and accurate approaches to search through
the spoken contents. The spoken term detection (STD) task is to
find all occurrences of the orthographically specified query terms
from a large spoken archive [1]. Most STD systems were based
on automatic speech recognition (ASR), transforming speech into
words or subwords for token matching [2, 3, 4, 5, 6]. The perfor-
mance of these methods relies heavily on the performance of the
speech recognizer [7], thus requiring large orthographically tran-
scribed training data. Recently, there have been efforts in query-
by-example (QbE) STD, where a spoken query is provided instead
of a text query [8, 9]. However this further complicates the problem
because short queries are error-prone for ASR and usually contain
out-of-vocabulary words. These methods are not reliable especially
for those languages with very limited annotated data [10] or some
dialects that have no writing systems [11].

Considering the above difficulties, there have been recent ef-
forts in QbE STD without speech recognition [12, 13], which is

also the focus of this work. Hereafter we assume all queries are
in speech form, and no annotated speech data is available. Prevail-
ing approaches to this task rely on dynamic time warping (DTW)
to directly match the spoken query to the spoken documents based
on the signal characteristics. This removes the requirement for an-
notated data and the impact of recognition errors. However, a major
limitation of DTW is that the distances are easily affected by speaker
mismatch and acoustic conditions. Many related works focused on
feature representations and distance measures that are more invari-
ant to speaker and acoustic condition diversities within the DTW
framework [14], including the posteriorgrams of a universal Gaus-
sian mixture model [15], and the acoustic segment models [16, 17].
These methods employed DTW in their matching processes, which
essentially take computation time linear to the number of frames to
be searched. Substantial efforts were devoted to reducing the com-
putation load, including a segment-based DTW [18, 19], a lower-
bound estimation for DTW [20, 21], and a locality sensitive hashing
technique for indexing speech frames [22].

In this work, we solve the unsupervised QbE STD problem for
the first time without DTW, using a set of models generated by au-
tomatic acoustic pattern discovery, including a subword-like pattern
acoustic model, a word-like pattern lexicon, and a word-like pat-
tern N-gram model [23]. Compared to DTW, the HMM is well
known for its ability to model the distributions and time trajectories
of speech signals, which better handles the signal variation problem
in DTW. The utterances in the spoken archive are decoded offline
into word-like patterns, followed by two online stages. In the first
stage, we propose a document state matching (DSM) approach
to match query frames to the decoded states in the documents. In
this way, not only do the HMMs better model the signal distribu-
tions and time trajectories, the much smaller number of states than
frames for the documents leads to much lower computational load.
Although the above DSM can be realized with the Viterbi algo-
rithm, we propose a duration-constrained Viterbi (DC-Vite) al-
gorithm to avoid unrealistic speaking rate distortion between the
query and the detected spoken term. In the second stage, we pro-
pose a pseudo likelihood ratio (PLR) approach by evaluating for
each hypothesized spoken term the likelihood ratio to the query/anti-
query HMMs trained with the pseudo relevant/irrelevant examples
obtained in the first stage. Significant detection improvements were
observed with much less computation time compared to the segmen-
tal DTW approach [15]. The results highlight the potential of lever-
aging well-developed HMM-based speech processing techniques for
model-based approaches for zero-resource STD. The detection per-
formance also suggests the feasibility of indexing speech data with
acoustic patterns.
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2. DOCUMENT STATE MATCHING

The aim of document state matching (DSM) is to use HMM state
representations of the spoken documents that have a more global
view over the speech signals in the archive than the relatively local
view of frame-based representation used in DTW-based approaches.
The models used to decode the spoken archive in the preprocess-
ing stage consist of a set of subword-like pattern HMMs, a lexicon
whose word-like patterns are expanded as subword-like patterns, and
a word-like pattern N-gram model, all generated from the spoken
archive by an acoustic pattern discovery approach [23]. The doc-
uments in the archive are first offline decoded into HMM state se-
quences of subword-like patterns. When the user enters a spoken
query, we find a partial state sequence in the document that maxi-
mizes the likelihood of generating the query.

2.1. Viterbi Decoding on Document State Sequence

Let X = {x1, . . . ,x|X|} be the query frame sequence and P =
(q1, . . . , q|P |) be the document state sequence. The matching rela-
tion between the document states and the query frames is defined by
a state assignment Z = (j1, j2, . . . , j|X|) for X such that the query
frame xi is matched to the document state qji . Our goal is to find a
state assignment Z for X that maximizes the likelihood of the state
assignment and query features,

l(X, Z) = Pr(qj1) ·
|X|−1∏
i=1

Pr(qji+1 |qji)
|X|∏
i=1

Pr(xi|qji). (1)

The state assignment Z must be monotonic and can begin and termi-
nate at any state, which corresponds to matching the query to a par-
tial state sequence in P . This problem can be solved by the Viterbi
algorithm on the index plane of document states (vertical axis) and
query frames (horizontal axis) as in Fig. 1. A state assignment cor-
responds to a monotonic path going from the leftmost column to the
rightmost column on this index plane. An example path going from
(1, 2) to (15, 6) in Fig. 1 represents the matching of (x1, . . . ,x15)
to (q2, . . . , q6).

2.2. Duration-Constrained Viterbi

Note in (1) there is no constraint on the number of frames matched to
the same state. When applying Viterbi decoding on the above prob-
lem, the frame duration in each document state is modeled by an ex-
ponential probability distribution due to the self-transition probabil-
ity, with known weakness [24]. In stead of the exponential duration
modeling in the HMM, here we explicitly constrain the possible du-
ration of each state based on the corresponding number of frames in
the document being considered, referred to as duration-constrained
Viterbi (DC-Vite).

Let fj be the number of document frames matched to qj in
P . We require that the number of query frames matched to state
qj must be between fj

γ
and γfj , where γ controls the maximum

possible speaking rate ratio. In the example of Fig. 1, |P | = 6
and f1 = 3 (3 document frames correspond to q1), f2 = 5, f3 =
4, etc. A horizontal line on the path represents a document state
matched to multiple query frames. When computing the optimal
partial paths ending at (i, j) = (12, 3) with f3 = 4 and γ = 2 in
dynamic programming, the number of frames staying in q3 must be
between f3

γ
= 2 and γf3 = 8. Hence we examine all paths from

(i, j) = (4, 2), (5, 2), . . . , (9, 2), (10, 2) and pick the one subpath
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Fig. 1. An example of the index plane for query frames and a
document state sequence with γ = 2. Each bold line represents
a document state matched to several query frames. For each state
qj , the number of document frames fj and the number of allowed
query frames ( fj

γ
∼ γfj) are respectively listed on the left and right

ends. For example, state q3 corresponds to 4 frames in the document
(f3 = 4), so it can match 2 ∼ 8 frames in the query given γ = 2.

that yields maximum likelihood when concatenated with the last hor-
izontal path. In this way, the numbers of query and document frames
matched to the same state differ at most by a factor of γ. Thus those
paths corresponding to unrealistic speaking rate distortion are elim-
inated.

To detect multiple matched regions in a document, we collect
all optimal state assignments ending at states q1 to q|P | and exam-
ine where they start. From each identical starting state, we choose
one best state assignment with maximum likelihood l(X, Z). In this
way, multiple spoken term regions appearing in the same utterance
can be individually detected. The detected spoken term regions in
the documents are referred to as hypothesized regions in this paper.

Aside from the fact that the proposed DSM approach repre-
sents documents with HMM state sequences trained with a more
global view, this approach also provides an additional benefit in re-
ducing computation. Both DTW and DC-Vite algorithms need to
perform local distance/likelihood calculations: frame-wise distance
for DTW, and query frame likelihood, Pr(xi|qj), for DC-Vite. For
DTW-based approaches, the number of computations for local dis-
tance required for a query is approximately the number of query
frames times the number of frames in all documents. In contrast, the
number of computations for Pr(xi|qj) required for a query is equal
to the number of query frames times the number of Gaussians in all
HMMs. This is due to the state representation for documents; all
frame level information in the documents is encoded into the states.
Also the computations for likelihood will not grow linearly with the
number of document frames, since Pr(xi|qj) is precomputed and
stored once the query is entered, and reused for different documents.
This is especially important for searching large spoken document
archive. Such a scheme is also suitable for indexing a spoken archive
for even faster document retrieval.

3. PSEUDO LIKELIHOOD RATIO

Following the DSM, a list of possible hypothesized regions (parts of
signals hypothesized as the query term) are obtained, whose scores
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describe their similarity to the query. These hypothesized regions
are sorted by the scores, with more similar regions listed higher. A
set R of pseudo relevant examples is defined by selecting the hy-
pothesized regions in the list whose rankings (or scores) are higher
than a threshold. Another set I of pseudo irrelevant examples are
also defined by selecting hypothesized regions whose rankings (or
scores) lie below a threshold. We assume these pseudo irrelevant ex-
amples are in fact not the desired spoken term, but are similar to the
query in the signal space. We train two left-to-right HMMs, ΛR,ΛI
using the setsR and I for each query respectively. The model ΛR is
referred to as the query HMM and ΛI as the anti-query model. After
EM training of ΛR and ΛI , each hypothesized region is rescored by
the likelihood ratio to ΛR and ΛI [25].

We apply the same initialization steps for ΛR and ΛI . They
differ after EM training with different training sets R and I.
Following the notations from Subsection 2.2, assume the partial
state sequence for the most similar pseudo relevant example is
Q = (q1, q2, . . . , q|Q|), where qk is the k-th state in the sequence.
The query HMM ΛR and the anti-query HMM ΛI , both with
|Q| states, are then initialized as follows. Let the states in ΛR
be
{
q̂1, . . . , q̂|Q|

}
. The Gaussians in state q̂j are copied from the

Gaussians in qj without sharing. The prior probabilities are set as
Pr(q̂1) = 1 and Pr(q̂j) = 0 otherwise. The self-transition prob-
ability of state q̂j is copied from state qj , and the rest is set to the
transition probability to the next state. Therefore Pr(q̂|Q||q̂|Q|) = 1,
and for j = 1, . . . , |Q| − 1,

Pr(q̂j |q̂j) = Pr(qj |qj) (2)
Pr(q̂j+1|qj) = 1− Pr(qj |qj) (3)

The same initialization is applied on ΛI , so all the parameters of ΛI
have the same initial value as those in ΛR before EM training.

After the model ΛR is initialized, it is trained using the
query feature sequence X0 and the pseudo relevant examples
R =

{
X1, . . . ,X|R|

}
, where X1 has the highest score. Since

the hypothesized regions have different confidence of being relevant
to the query, the i-th training example Xi has a training weight 2−λi,
where λ controls the decay rate of weight based on the ranking. For
anti-query model ΛI training, the training weights for each training
sample in I are set to be equal, so pseudo irrelevant examples are
modeled with equal importance. Then EM algorithm is performed
on both models.

After the two models are trained, the relevance score of each
hypothesized region is set to the log likelihood ratio for the region
with respect to the query HMM ΛR and anti-query HMM ΛI . In
this way, the finer signal differences that separate the true spoken
terms from false accepted regions can contribute to larger likelihood
ratios for the signal regions, while the likelihoods of signal parts that
are inseparable among true and false hypotheses will be depressed.

4. EXPERIMENTAL SETUP

4.1. Queries and Document Archive

We evaluated the proposed approach with a spoken term detection
task on Mandarin broadcast news. The audio archive was collected
daily from the News98 FM radio station in Taiwan in August, 2001
and is 4.1 hours long in total. The news stories were manually seg-
mented into 5034 utterances, which were taken as 5034 documents
to be searched through. Except for a small number of utterances pro-
duced by male reporters, the spoken documents were all produced
by female speakers. From the spoken documents, 42 test query

Table 1. The parameters for the model generated by two-level acous-
tic pattern discovery.

model / parameter count
#word-like patterns 362
#subword-like pattern models 208
#state per subword-like pattern model 13
#total states (include sil & sp ) 2707
#total Gaussians (include sil & sp ) 2713
language model bigram

instances were manually extracted, containing names of countries,
events, politicians and organizations. The test query terms ranged in
length from 2 to 7 syllables, with a majority of 2 and 3 syllables. The
number of relevant documents for each query ranged from 9 (0.2%)
to 111 (2.2%) , averaging 26 (0.5%) in the archive. When evaluating
the detection performance of each query, the document containing
the query instance was excluded from searching and evaluation. To
obtain the necessary parameters in the approaches discussed here,
ten additional queries were defined in the Mandarin broadcast news
corpus as the development set. All parameters used in our experi-
ments were obtained using the development set.

4.2. Feature and Evaluation Metric

In the baseline segmental DTW experiment, we used Gaussian pos-
teriorgrams as the feature vectors and the frame-wise distance mea-
sure d(x,y) ≡ − log(x · y), as suggested by previous works [14].
The Gaussian posteriorgrams were obtained from a universal Gaus-
sian mixture model (GMM). The feature vectors used to train the
GMM were the conventional 13-dimensional MFCC features with a
20ms Hamming window and a 10ms frame shift, concatenated with
the derivative and acceleration. Fifty Gaussians were used in the
GMM [15]. The same feature vectors were used in training subword-
like pattern HMMs.

The mean average precision (MAP) [26] was used to evaluate the
detection performance. To calculate the MAP value, all documents
were ranked according to their relevance to the query. For DTW ap-
proaches, lower distance scores imply higher relevance, whereas for
our model-based approach, higher likelihoods or likelihood ratios
imply higher relevance. Hits and misses were evaluated per docu-
ment. That is, a hit was counted if the returned document contained
the desired query term, regardless of whether it contained single
or multiple spoken terms. The MAP values reported in this paper
were obtained using the trec eval toolkit1. We also evaluate the
CPU time for our proposed approaches. The unit of CPU time is
sec/DHQS (document-hour × query-second), that is, the computa-
tion time in seconds if an hour of document is search using a one
second long query.

4.3. Model of Acoustic Patterns

The parameters of the model generated by acoustic pattern discov-
ery [23] are listed in Table 1. There are 208 subword-like patterns,
which are highly correlated to Mandarin syllables. The HMM for
each subword-like model has 13 states, each with single Gaussian
component. There are 362 word-like patterns in the lexicon; the 154
extra word-like patterns are composed of multiple subword-like pat-
terns.

1[Online]. Available: http://trec.nist.gov/trec eval/
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Table 2. MAP(%) and average CPU time of DTW-based and pro-
posed model-based approach. Row (1) are the results for baseline
segmental DTW approaches. Rows (2)-(3) are the results using pro-
posed DSM. Row (4)-(5) show the results of PLR by rescoring or
score fusion. The unit of CPU time is sec/DHQS (document-hour ×
query-second).

Method MAP P@10 CPU time
(1) Segmental DTW 37.5 50.2 7.16
(2) DSM: Viterbi 37.7 51.4 1.00
(3) DSM: DC-Vite 40.2 54.5 2.67
(4) (3)→ PLR 47.2 62.4 3.41
(5) (3) + PLR (α = 0.8) 49.3 62.4 3.41

5. EXPERIMENTS

5.1. DSM by DC-Vite

We evaluated the detection performance of the proposed document
state matching (DSM) approach, using both Viterbi and the proposed
DC-Vite as presented in Section 2. The MAP results are respectively
listed in rows (2)–(3) in Table 2. The main difference between DC-
Vite and Viterbi is the duration constraint. Applying the duration
constraint in Viterbi decoding improved the MAP from 37.7% to
40.2%, showing that the speaking rate ratio constraint was an im-
portant issue in the matching process. Compared with the baseline
segmental DTW approach (row(1)), there was a 2.7% absolute MAP
improvement for DC-Vite with 2.7× times efficiency gain. As men-
tioned previously in Section 2.2, the number of local distance calcu-
lations for DTW is equal to the number of query frames times the
number of frames in all documents. For DC-Vite, the number of
likelihood Pr(xi|qj) calculations is equal to the product of the num-
ber of query frames and the number of Gaussians in the subword-
like pattern models. There were 1.49× 106 frames in the document
archive but only 2713 Gaussians in the models as shown in Table 1.
The number of local distance/likelihood computations differ by more
than a factor of 700. This explains the reduction in CPU time. Al-
though the efficiency gain was not large on our experimental data set
(only 4.1 hours), the discovered models showed the ability to repre-
sent speech archive without much loss of acoustic information. We
expect the search time to be essentially independent of number of
documents by indexing the archive with such word-like patterns in
the future.

5.2. PLR

We report the results with the pseudo likelihood ratio (PLR) ap-
proach in the second stage listed in rows (4)–(5) of Table 2. From the
first stages, a ranking list of hypothesized regions was returned by
DC-Vite. We assume only the top K regions were competitive and
to be reranked by the PLR approach, where K = 1000. We took
as pseudo relevant examples the top |R| hypothesized regions ob-
tained in the first stage, ranked with decreasing likelihood generated
by DC-Vite, where |R| = 7 in our experiments. Excluded from the
pseudo relevant examples, |I| hypothesized regions were randomly
selected from the top K competitive hypothesized regions to form
set I and to train ΛI , where |I| = 50 in our experiments. The decay
parameter λ for training ΛR was set to 0.25. After the two models
were trained for each query, the Viterbi algorithm was performed on
every hypothesized region in the top K list using both models. For
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Fig. 2. Mean average precision with respect to different interpolation
weight α.

each hypothesized region H, the relevant score was set to be the log
likelihood ratio of H to ΛR and ΛI . We reranked the topK hypoth-
esized regions according to their log likelihood ratios, and froze all
other lower ranked hypothesized regions in the list. The results are
listed in row (4). We see that performing PLR in the second stage
has a 7.0% absolute MAP improvement and a 7.9% absolute P@10
improvement over the DC-Vite approach. It shows that with enough
pseudo relevant examples, we can more precisely characterize the
distribution and trajectory of the query using a whole word HMM.
Also, emphasizing the likelihood ratio of discriminative signal parts
that separate the true spoken terms from competitive false accepted
regions is very effective for accurate detection.

We also considered relevance score integration for DC-Vite and
PLR. After normalizing the DC-Vite scores and PLR scores to zero
mean and unit variance, the fused score for each hypothesized region
in the top K list was computed as a linear interpolation of the scores
obtained from the two approaches with an interpolation weight α.
The top K hypothesized regions were reranked according to the in-
terpolated weight. The results are equivalent to DC-Vite in row (3)
of Table 2 if α = 0, and α = 1 produces the result of PLR in
row (4). Fig. 2 shows the MAP with different alpha, with optimal
α = 0.8. It is clear that the combination can achieve better detection
performance than each approach alone.

6. CONCLUSION

We propose a two-stage model-based approach for unsupervised
QbE STD using a set of models generated by automatic acoustic
pattern discovery. By representing spoken documents as the states
in the acoustic patterns, we can match query frames to document
states without calculating frame-wise distance as in DTW. The
proposed duration-constrained Viterbi approach can eliminate unre-
alistic speaking rate distortion thus outperforms conventional Viterbi
decoding. The proposed pseudo likelihood ratio approach further
improves the detection performance by modeling the distribution
of pseudo relevant examples and competitive pseudo irrelevant
examples. Experimental results show a 11.8% absolute MAP im-
provement over the segmental DTW approach, which suggests the
feasibility of indexing speech data with automatically discovered
acoustic patterns. The proposed approach highlights the poten-
tial of leveraging well-developed HMM-based speech processing
techniques for model-based approaches for zero-resource STD.
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