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ABSTRACT

In this paper, we propose a new lower-bound estimate for speeding
up dynamic time warping (DTW) on multivariate time sequences.
It has several advantages as compared with the inner-product lower
bound [1] recently proposed to eliminate a large number of DTW
computations. First, we prove that it is tighter than the inner prod-
uct lower bound while the computational complexity remains com-
parable. Second, the inner product lower bound is specifically de-
signed for the inner product distance while the proposed lower bound
is valid for any distance measure. Third, DTW search can be further
speeded up since the distance matrix is calculated in advance at the
lower bound estimation stage. Spoken term detection experiments
on the TIMIT corpus show that the proposed lower bound estimate
is able to reduce the computational requirements for DTW-KNN
search by 54% as compared with the inner-product lower bound. in
black ink.

Index Terms— dynamic time warping, lower-bound, spoken
term detection, pattern matching

1. INTRODUCTION

Dynamic time warping (DTW) is a classical dynamic programming
algorithm that searches the best alignment between two time series.
Different from Euclidean distance, by allowing the compared time
sequences to have different lengths, DTW provides a more reason-
able similarity measure. Moreover, it has no assumption on the
underlying knowledge about the sequences to be aligned. In the
history of automatic speech recognition (ASR), DTW first became
popular in isolated and connected word recognition and then was
supplanted by hidden Markov models (HMMs), a statistical model-
ing framework appropriate for large vocabulary continuous speech
recognition (LVCSR). However, DTW has drawn much interest re-
cently for unsupervised and low-resource tasks, e.g., template-based
speech recognition [2, 3], unsupervised speech pattern discovery [4,
5], example-based spoken term detection (STD) [6, 7] and acoustic-
based spoken document segmentation [8]. Recently, Zhang et. al. [6]
have proposed an unsupervised spoken keyword spotting approach
using a segmental version of DTW. Given a speech query, a series
of DTW matching is performed in windows sliding over a speech
utterance.
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Although DTW is a straightforward and intuitive sequence
matching algorithm, its computational cost remains notoriously
high, especially for matching in large corpora and mining trillions
of time series [9]. Take DTW-based STD task for example. Given
a query of length N , the computational complexity for a simple
matching is O(N2). To find the best match of a given query in a
speech corpus with a huge number of utterances (e.g. M ), it would
take O(N2M) time. For the speech pattern discovery task [4, 5],
more DTW computations are required since it involves convolving
a corpus of utterances against itself to find reoccurring patterns.

To speed up DTW, the concept of lower-bound has been intro-
duced and various lower bound estimates have been proposed [10,
11, 1, 12]. A lower bound is able to prune off unpromising candi-
dates and saves computation costs. Keogh et. al. [10] proposed an
lower bound measure for comparing univariate time series, which is
proved to be tighter than previous measures [13, 14]. Subsequently,
Rath et. al. [11] extended this lower bound to multivariate time se-
ries. Recently, inner product between posteriorgram vectors [4, 1, 7]
has shown superior performance on a variety of DTW-based tasks.
Based on Rath’s lower bound, Zhang et. al. [1] have proposed a
lower-bound estimate specifically for the inner-product distance. For
aK nearest-neighbor (KNN) spoken term detection task on the TIM-
IT corpus, 89% of the DTW calculations can be eliminated without
affecting the detection performance. Since different lower bounds
are different in tightness, Keogh has proposed to cascade different
lower bounds [9].

This study is related to Rath’s [11] and Zhang’s [1] approaches
on DTW lower bounding for multivariate time series. As we know,
in order to estimate a lower bound, an auxiliary upper-bound enve-
lope sequence needs to be firstly derived. The nature of their ap-
proaches is to calculate an individual upper-bound envelope for each
dimension of the multivariate data vector, simply using Keogh’s ap-
proach on univariate time series [10]. However, DTW distances are
measured on vectors. This motivates us to develop a unified auxil-
iary envelope for the whole vector sequence. In this paper, we pro-
pose such a lower bound that shows several advantages as compared
with Zhang’s lower bound [1]. Firstly, we prove that it is tighter
while its computational complexity remains comparable. Secondly,
Zhang’s lower bound is specifically designed for the inner product
distance measure while the proposed lower bound is valid for any
distance measure. Finally, the distance matrix for DTW is calcu-
lated in our lower bound estimation stage and further speedup of
DTW search can be achieved if the distance matrix is pre-stored.
Spoken term detection experiments show that the proposed lower
bound estimate is able to reduce the computational requirements for
DTW-KNN search by 54% as compared with the inner-product low-
er bound.
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Fig. 1. Query and speech utterance matching using segmental DTW.

2. BACKGROUND

2.1. Gaussian Posteriorgram

Due to the superior generalization ability across speakers, poste-
rior probability vectors are often used as speech features [1, 12].
Gaussian posteriorgram is a feature representation of speech frames
generated from a GMM [1]. AD-mixture GMM model is trained on
a set of unlabeled speech frames in a corpus, ~f1, · · · , ~fN . Thus
a speech frame ~fi can be represented by a probability vector
~pi = {p1i , · · · , pDi }, where pji = P (gj |~fi) is a posterior probability
which can be calculated for each Gaussian component gj ∈ G, and∑
j p

j
i = 1 ∀i.

2.2. DTW on Gaussian Posteriorgram

Given posteriorgrams of two speech sequences, Q = {~q1, · · · , ~qN}
and S = {~s1, · · · , ~sN}, where ~qi and ~si are D-dimensional pos-
terior probability vectors1. The distance between ~qi and ~si can be
defined by their inner product as d(~qi, ~si) = − log(~qi · ~si) [1]. We
define an alignment path φ = {(~qφq1, ~sφs1), · · · , (~qφqT , ~sφsT )},
mapping Q to S. In order to avoid unreasonable warping path-
s, a global warping window constraint r is applied to ensure
|φqk − φsk| ≤ r. The alignment distance for path φ is defined
as Dφ(Q,S) =

∑T
k=1 d(~qφqk, ~sφsk). Hence the DTW distance

between Q and S is defined as

DTW (Q,S) = min
φ
Dφ(Q,S). (1)

2.3. KNN-DTW based Spoken Term Detection

The spoken term detection task is to detect whether a speech utter-
ance V (with the length of M ) contains a speech query Q (with the
length ofN ). Specifically, given a speech query exampleQ, we wish
to find the top K nearest-neighbor (KNN) matches in speech utter-
ances from a speech corpus. Since usually M > N , when compar-
ing Q with V , we use the segmental DTW (SDTW) algorithm [6].
Specifically, a sliding window with the size equal to the length of
the keyword (N ) is applied to the utterance to constrain the DTW
search area, as shown in Fig. 1. Note that warping constraint r is
also adopted. The sliding window gradually moves (e.g., one frame
forward) from the beginning to the end of the utterance, and a series
of DTW matches is performed. The score for an utterance containing
the keyword query corresponds to the smallest DTW score obtained
in that utterance. The top K matches with the smallest DTW scores
are regarded as the detected utterances that matches the input query.

1Without lose of generality, we use the same length N for two sequences.

Fig. 2. The calculations for the inner product lower bound LBIP .

2.4. The Inner-Product Lower-Bound

DTW is a matching algorithm with high computational cost. To
speed up, a cheap-to-compute lower bound can be used to prune
off unpromising candidates. Recently, Zhang et. al. [1] have pro-
posed an inner-product lower-bound estimate for DTW on Gaus-
sian posteriorgrams. Firstly, an upper-bound envelop sequence U =
{~u1, · · · , ~uN} is calculated for queryQ, where ~ui = {u1

i , · · · , uDi }
and upi = max(qpi−r, · · · , q

p
i+r). The lower bound of DTW(Q,S)

can be defined as

LBIP (Q,S) =

N∑
i=1

d(~ui, ~si). (2)

Expanding the right side with the inner product definition yields
LBIP (Q,S) =

∑N
i=1− log(~ui · ~si). The proof of the lower bound

property can be find in [1].

3. THE PROPOSED LOWER-BOUND

In this section, we introduce a new tighter DTW lower-bound es-
timate for multivariate time series, which is valid to any distance
definitions.

3.1. Definition

Given two time sequences, Q = {~q1, · · · , ~qN}, and S = {~s1, · · · ,
~sN}, we firstly derive a new sequence, M = {~m1, · · · , ~mN},
where

~mi = arg min
~mi∈{~qi−r,··· ,~qi+r}

d(~mi, ~si) (3)

and r is the width of the DTW warping window. Then our lower
bound can be defined as

LBYX(Q,S) =

N∑
i=1

d(~mi, ~si). (4)

3.2. Computational Complexity

Next, we will show that, for the spoken term detection task, the over-
all computation complexity of LBYX is comparable with LBIP .
Fig. 2 shows the lower-bound calculations for LBIP . A dot denotes
the distance between a frame in the upper-bound envelop sequence
U of the query keyword Q and a frame in the speech utterance V .
According to the sliding strategy in the SDTW algorithm, a lower-
bound is calculated for each blue dotted line in Fig. 2. Specifically,
the sum of the distances of the dots on the blue dotted line is used
as the lower-bound, as defined in Eq. (2). Therefore, to search for a
query in a speech utterance, the overall computation complexity for
the LBIP estimates is O(MN). For the calculation of LBYX , we
can refer to Fig. 1. In each hexagon area (warping window constraint
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r = 1), we seek for the dot with the smallest distance in each colum-
n, as shown in Eq. (3). According to Eq. (4), we sum the distances
of these dots on the blue line and obtain the lower-bound. To search
for a query in a speech utterance, sliding the hexagon from the left
to the right, the overall computation complexity for the LBYX es-
timates is also O(MN). Please note that it might take a little bit
longer to calculate LBYX since the dots involved in LBYX calcu-
lation is a little bit more than those in LBIP . This can be seen when
comparing Fig. 1 with Fig. 2.

3.3. Proof: Lower Bound Property

To prove the lower-bounding property, i.e.,

LBYX(Q,S) ≤ DTW (Q,S), (5)

we follow the thoughts in [10, 11]. Assuming the alignment path
φ̂ = {(~qφ̂q1

, ~sφ̂s1
), · · · , (~qφ̂qT

, ~sφ̂sT
)}, corresponds to the mini-

mum alignment distance, where T denotes the length of the path,
we have DTW (Q,S) =

∑T
k=1 d(~qφ̂qk

, ~sφ̂sk
). By expanding both

terms in Eq.(5), we need to show

N∑
i=1

d(~mi, ~si) ≤
T∑
k=1

d(~qφ̂qk
, ~sφ̂sk

) (6)

Since the summation terms on both sides of Eq.(6) is positive, we
just need to prove the inequality in Eq.(6) by showing that, for each
term on the left side, there exists an equal or greater term on the right
side. To this end, we split the the right side into two parts

N∑
i=1

d(~mi, ~si)≤
∑
k∈MA

d(~qφ̂qk
, ~sφ̂sk

)+
∑
k∈UM

d(~qφ̂qk
, ~sφ̂sk

), (7)

where MA denotes a matched set containing exactly N warping
pairs, and UM denotes to an unmatched set including all remain-
ing pairs. We form the two sets as follows. For the ith term on the
left side, a warping pair (φ̂qk, φ̂sk) from the right side is chosen into
MA if φ̂sk = i. If there are multiple warping pairs on the right side
with φ̂sk = i, we just select the pair with smallest φ̂sk = i. Since
T ≥ n, there are always enough pairs can be selected into MA. By
following this rule we ensure that the size of MA is exactly N so
that each term on the left side is matched exactly once by an element
in the MA on the right side, i.e., one-to-one match. Hence if we are
able to show

N∑
i=1

d(~mi, ~si) ≤
∑
k∈MA

d(~qφ̂qk
, ~sφ̂sk

), (8)

Eq. (6) can be obviously proved.
Consider an individual warping pair in MA, (φ̂qk, φ̂sk), which

corresponds to the ith term on the left side. We need to show

d(~mi, ~si) ≤ d(~qφ̂qk
, ~sφ̂sk

) (9)

According to the DTW constraint window, i − r ≤ φ̂qk ≤ i + r,
we have ~qφ̂qk

∈ {~qi−r, · · · , ~qi+r}. Due to Eq. (3), d(~mi, ~si) is the
smallest distance within the warping constraint window. Obviously
Eq. (9) is proved and from bottom to up, Eq. (5) is proved. Please
note that this lower bound property is valid for any distance measure
as compared to LBIP [1] whose lower bound property is proved
under the inner-product distance measure.

3.4. Proof: Tighter than LBIP

Here, we show that the new lower-bound estimate is tighter than the
inner-product one, i.e., LBYX ≥ LBIP . Take the inner products
in,

n∑
i=1

− log(~mi · ~si) ≥
n∑
i=1

− log(~ui · ~si). (10)

If we are able to show every sum term on the left-hand side is greater
than or equal to the corresponding term on the right-hand side, i.e.,

− log(~mi · ~si) ≥ − log(~ui · ~si), (11)

Eq. (10) is proved. By eliminating the log and the minus sign, we
need to show

~mi · ~si ≤ ~ui · ~si. (12)

Expanding the both sides of Eq.(12) yields

D∑
j=1

mj
i × s

j
i ≤

D∑
j=1

uji × s
j
i , (13)

which can also be proved by showing that every sum term on the left
is less than or equal to the corresponding term on the right,

mj
i × s

j
i ≤ u

j
i × s

j
i . (14)

Since ~mi = argmin~mi∈{~qi−r,··· ,~qi+r} d(~mi, ~si), we have mj
i ∈

{qji−r, · · · , q
j
i+r}. By definition in [1], uji = max(qji−r, · · · , q

j
i+r).

Thus mj
i ≤ uji holds. According to the definition of the Gaus-

sian Posteriorgram, sji , u
j
i and mj

i are all positive. Therefore
mj
i × s

j
i ≤ u

j
i × s

j
i and from bottom to up, Eq. (10) is proved.

We show that our lower bound estimate is tighter than the inner-
product one [1]:

DTW (Q,S) ≥ LBYX(Q,S) ≥ LBIP (Q,S). (15)

Theoretically a tighter lower bound can prune more DTW calcula-
tions and the KNN search task can be speeded up. In Section 4,
experiments will confirm this.

3.5. Further KNN-DTW Speedup

As we know, to match two sequences using DTW, an N × N dis-
tance matrix needs to be calculated. As we described in Section 3.1,
this distance matrix has been already calculated during our lower-
bound estimate stage. Therefore, if this matrix is stored in advance,
the subsequent KNN-DTW search can just work on this matrix and
we do not need to calculate it again. By this way, further speedup
can be achieved. At the same time, the space complexity is increased
to O(MN), where N is the keyword’s length, and M is the whole
length of the utterances in the dataset. DTW matching using LBIP
does not has this advantage of speedup. Actually, in order to calcu-
late LBIP , an N × N distance matrix between U and S has to be
calculated. During DTW matching, part of another N ×N distance
matrix between Q and S still needs to be calculated, although some
of the distance calculations are eliminated according to the lower
bound.

4. EXPERIMENTS

4.1. Experimental Setup

The speedup ability of the two lower-bound estimates (LBYX and
LBIP ), is compared on an example-based spoken term detection

8527



task as described in Section 2.3. The distance matrix pre-storage s-
trategy introduced in Section 3.5 is also tested and we name this ap-
proach as LBYXS . We follows the experimental setup in [12]. The
TIMIT corpus is divided into a training set with 3,696 utterances and
a test set with 944 utterances. Each utterance is then converted into
a series of 13-dimension MFCC vectors (frame length:25ms, shift
rate: 10ms). A 50 component GMM is then trained in an unsuper-
vised manner using the training set. As a result, every speech frame
in the training and test sets is represented by a 50-dimension GMM
posteriorgram vector.

A set of 10 keywords is randomly selected and one example of
each keyword is extracted from the training set as the input query. A
stopword list is used to avoid the frequently used words from being
selected as keywords. According to Section 2.3, the spoken term
detection task is to find the K best matching utterances in the test
set containing the query keyword. For the experiments on the three
lower-bound estimates, we use the same keyword list and the same
DTW-KNN search framework proposed in [1].

4.2. Experimental Results

From Section 3.3, we can see that the proposed lower-bound esti-
mate (LBYX ) is admissible. The lowest equal error rate (EER)
achieved by the LBYX approach is 14.58% when K = 143 and
r = 5. This EER is almost the same with the result achieved by
LPIP [1]. We notice that the K and r that achieve the lowest EER
are different for the two lower bounds. This is probably because
our experimental configuration (e.g., feature extraction parameters,
query examples, etc.) is slightly different from [1].

Fig. 3 illustrates the average inner product save ratio against dif-
ferentK nearest neighbors for different r. The ratio is defined as the
percentage of total inner product calculations saved by LBYX com-
paring withLBIP . As seen in the figure, in most cases, the proposed
lower bound achieves apparent computational savings. The highest
computing saving is 12.2%, which is achieved when K = 150 and
r = 9. When the lowest EER is achieved (K = 143, r = 5), the
inner product save rate is 8%. We also notice that when r and K
are small, LBYX shows slightly worse performance. This can be
explained as follows. The tightness of lower bounds and the pruning
power essentially depend on the size of the warping window r, and
the smaller the area of allowed warping, the more we can take ad-
vantage of pruning [12]. Thus when r is small , the two lower-bound
estimates have comparable tightness and pruning power. Although
calculating LBYX and LBIP is in the same order of magnitude of
computation (O(MN)), LBYX may need a little bit more calcula-
tions, as explained in Section 3.2.

Fig. 3 shows the computational savings caused only by the tight-
ness of the new lower bound. If the pre-storage approach is consid-
ered, more calculations can be saved, as shown in Fig. 4. Here, the
save ratio is defined as the percentage of total inner product calcu-
lations saved by LBYXS comparing with LBIP . We can see that
more calculations can be eliminated when using the pre-storage ap-
proach. Specifically, when K = 143 and r = 5, at which setting
the minimum EER is achieved, the LBYXS approach can save 54%
inner-product calculations as compared to LBIP . We also notice
that the inner product save ratio increases with r. This behavior can
be explained as follows. A bigger r leads to less tighter lower-bound
estimate, and thus more DTW searches need to be done, as can be
obviously seen in [1]. As a result, the increased DTW searches cause
more inner-product calculations. TheLBYXS method stores the dis-
tance matrix in advance, and thus the increased DTW search doesn’t
bring increased inner-product calculations. Hence the save ratio be-
comes bigger as r increases.
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Fig. 3. The average inner product calculations save ratio against
different K nearest neighbor; Ratio = (Inner Prod(LBIP ) −
Inner Prod(LBYX))/Inner Prod(LBIP ).

0 200 400 600 800 1000

0

10

20

30

40

50

60

70

80

90

100

K Neareast Neighbor

In
ne

r 
P

ro
du

ct
 S

av
e 

R
at

io
(%

)

 

 

r=1
r=3
r=5
r=7
r=9

Fig. 4. The average inner product calculations save ratio against
different K nearest neighbor; Ratio = (Inner Prod(LBIP ) −
Inner Prod(LBYXS))/Inner Prod(LBIP ).

In terms of the empirical computation time, the inner produc-
t lower bound approach (LBIP ) takes 48.4s, while the new lower
bound (LBXY S) take only 27.1s, when searching matches for the
10 keywords in the test set on a single desktop CPU on average.

5. CONCLUSIONS

In this paper, we have proposed a tighter lower bound estimate for
DTW on multivariate time series. Experiments on a DTW-KNN spo-
ken term detection task have shown that the lower bound is superior
to the inner product lower bound in speeding up the DTW search.
Since our lower bound is valid to any distance measure, we plan to
implement our lower bound to other distance measures. To further
reduce the computation burden from lower bound estimate, Zhang
et. al. have recently proposed a cheap-to-compute lower-bound
based on piecewise aggregate approximation (PAA) [12]. PAA can
be viewed as a down-sampling approach which can make a short but
representative abstraction for a long time series. It reduces the cal-
culation of the lower-bound estimate, leading to a less tighter lower-
bound, but produces an overall KNN search speedup. In the future,
we plan to develop a similar down-sampling approach for our lower
bound and compare it with the PAA approach.
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