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ABSTRACT

With the increase in multi-media data over the Internet, query by ex-
ample spoken term detection (QbE-STD) has become important in
providing a search mechanism to find spoken queries in spoken au-
dio. Audio search algorithms should be efficient in terms of speed
and memory to handle large audio files. In general, approaches de-
rived from the well known dynamic time warping (DTW) algorithm
suffer from scalability problems.

To overcome such problems, an Information Retrieval-based
DTW (IR-DTW) algorithm has been proposed recently. IR-DTW
borrows techniques from Information Retrieval community to detect
regions which are more likely to contain the spoken query and then
uses a standard DTW to obtain exact start and end times. One draw-
back of the IR-DTW is the time taken for the retrieval of similar
reference points for a given query point. In this paper we propose
a method to improve the search performance of IR-DTW algorithm
using a clustering based technique. The proposed method has shown
an estimated speedup of 2400X.

Index Terms— Spoken term detection, audio search, query by
example , indexing, retrieval.

1. INTRODUCTION

Query by example spoken term detection (QbE-STD) task is to de-
tect a spoken query in spoken audio data (or reference data). With
the increase in multi-media data over the Internet, a need for search-
ing in audio databases has increased. One of the key aspects for
QbE-STD is to enable voice search in very large multi-lingual data
in real time.

QbE-STD task was previously attempted by first converting au-
dio into a sequence of symbols and then performing a text based
search. In [1, 2, 3], audio is first converted into sub-word like units
using an automatic speech recognizer (ASR) and lattice-based search
techniques are incorporated to further increase the performance of
the system. These type of methods have become very popular as
they enable fast retrieval by using text based search techniques.

One of the major issues of ASR based techniques, is the avail-
ability of labelled data for training the Hidden Markov Models
(HMM). To overcome this problem, zero resource pattern match-
ing techniques [4, 5, 6, 7] have been proposed. These techniques
use similarity matrices (sparse/full) in detecting the spoken term.
A popular technique for searching spoken queries in audio data is
the segmental-DTW [4] which is slow and require a lot of memory
as it computes a full similarity matrix. In [7, 8] faster variants of
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segmental-DTW were proposed to visit multiple cells in the simi-
larity matrix only once, but the problem to handle large audio data
still exists. In this paper we compare the performance results with
the subsequence-DTW (S-DTW) [9] by using the implementation
proposed in [7].

Alternative techniques have been proposed by [5] and [10] to
search in large audio files in real time. [5] use randomized hashing
algorithms in building a sparse matrix and then use image processing
techniques in detecting the most likely matching segment.

IR-DTW technique [10] uses a fusion of information retrieval
and DTW approaches. In IR-DTW, no similarity matrix needs to
be constructed as the algorithm performs a sequential scan of the
spoken query and accumulates information about the partial match-
ing paths between the query and the audio reference data. IR-DTW
then performs DTW alignment on the detected paths to get an accu-
rate start and end points. In [10], it has been shown that IR-DTW
is memory efficient as compared to S-DTW. One drawback of IR-
DTW is that it uses an exhaustive search over all the reference data
for a given query.

In this paper we propose an Indexing and Retrieval based ap-
proach using hierarchical K-Means clustering to speedup the IR-
DTW. A similar kind of approach was used in large scale image
recognition [11] and object and scene retrieval from videos [12].
The proposed algorithm shows as estimated speedup of 2400X and
is faster than the one proposed in [13] using randomized hashing al-
gorithms and image processing techniques, which has a speedup of
800X.

Section 2 gives a brief description of the IR-DTW. In section 3
we propose the indexing and retrieval of reference features (refer-
ence data) using hierarchical K-Means for IR-DTW and section 4
shows the performance of the system as compared to IR-DTW with
exhaustive search and S-DTW.

2. INFORMATION RETRIEVAL-BASED DTW (IR-DTW)

The IR-DTW algorithm described in [10], borrows techniques from
the Information Retrieval community and traditional real-valued dy-
namic programming algorithms to perform the matching between a
spoken query and spoken reference audio. Its main advantages are
the requirement of a small memory footprint and allowing for a fast
implementation, as shown in this paper.

Most DTW-based algorithms like those proposed in [4, 7] build
similarity matrices of size N x M, where N, M are the length of the
query and the reference audio. This is a big limitation when re-
quiring to search on big databases. Instead, IR-DTW performs the
matching just using a vector memory structure, thus reducing the
amount of total memory required, regardless of the size of the query
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and the reference data. In addition, by indexing the reference data
(as shown in this paper) a considerable speedup is obtained. Next
we briefly review the IR-DTW algorithm.

Let Q = {q1, q2, . . . , qi, . . . , qN} be a query audio file con-
taining N feature vectors, and R = {r1, r2, . . . , rj , . . . , rM} be a
reference audio file containing M feature vectors. The main steps of
the IR-DTW are shown in Algorithm 1

Algorithm 1 Information Retrieval-based Dynamic Time Warping
Input: Q, R time series, maxQDist parameter
Output: P set of matching paths

ΔT ← ⊘,P ← ⊘
for all qiǫQ do

R′ ← best points(R, qi) {STEP 1}
for all rjǫR′ do

match point ← {tqi, trj , d(qi, rj)}
ΔT ← InputMatch(match point, maxQDist) {STEP 2}

end for
end for
for all kǫΔT do

P ← P ∪ process&extract(ΔT [k]) {STEP 3}
end for

IR-DTW performs a sequential scan of all the query points qi in
Q. In STEP 1 of Algorithm 1 a search is performed for all the ref-
erence points R′ ⊆ R that are similar to a given query qi. This can
be done using an exhaustive comparison of all query-reference pairs
or, as proposed in this paper, using a fast retrieval of the reference
points (STEP 1 in algorithm 1) using a hierarchical K-Means clus-
tering based indexing and retrieval approach. From this point on,
only matching pairs are used to find final matching subsequences.
For this reason, a system parameter maxQDist is introduced as the
maximum allowed distance between any two matching points within
a good matching subsequence.

From the retrieved reference points R′, a match point element
is defined as a triplet composed of tqi, trj and d(qi, rj). tqi and
trj are the time offsets of the query and the reference data measured
from the start of their respective temporal sequences. d(i, j) is the
distance measure between query qi and reference rj points, given
by a cosine similarity in logarithmic scale. The core of the IR-DTW
algorithm (in STEP 2 of Algorithm 1) combines all match point el-
ements into matching subsequences of low overall distance between
query and reference that follow some local and global warping con-
straints.

In STEP 2 of Algorithm 1 a vector data structure called △T is
used to store the matching subsequences formed by concatenating
the match point elements. The location in △T where subsequences
are created and updated is based on the offset calculated from the
time stamps of query and reference points in each match point ele-
ment. For every query-reference matching point toffset = trj−tqi.

Would there be a diagonal match between the query and some
portion in the reference, toffset would be constant across that re-
gion in the reference. Due to the variation in the speaking rate and
acoustic conditions this is seldom true, even for the same speaker.
Following what is done in a standard DTW implementation, in the
IR-DTW algorithm a range of values around toffset are checked to
find the best matching subsequence to contain each match point el-
ement. The range of locations is given by t′offset = [toffset −

WRange, toffset +WRange], where WRange = maxQDist

2
for

a warping constraint allowing for one subsequence to be as much as
double the other.

The input match point element is appended to the subsequence
found to be the best among those within range. This decision can
be taken based on the normalized score (similar to DTW) or on the
subsequence length. Instead, if there is no existing subsequence at
any location in the range defined by t′offset then the match point
element is used to create a new subsequence at location toffset.

Once a sequential scan of all the query points is complete, △T
contains all the possible matching subsequences between the query
and the reference data. At this point we perform STEP 3 to select
those subsequences with a minimum length (set here to half of the
query length) and the net score below a defined threshold. Such a
threshold is applied to remove any spurious paths that might have
been detected.

Although the IR-DTW is already finished and all matching sub-
sequences have been found, in practice a standard DTW algorithm is
then applied in the detected regions to get an accurate start and end
time stamps and a score dependent on all frame pairs (not only those
selected as match point elements). A more detailed description of
the IR-DTW algorithm is given in [10].

Due to the sequential scan of the query qi and building the par-
tial matches, IR-DTW is memory efficient as compared to S-DTW.
While STEP 1 can be performed through exhaustive search, doing
so would have an important overhead in terms of computation. In
section 3 we propose an indexing and retrieval approach to IR-DTW
to obtain much greater performance in terms of speed.

3. INDEXING AND RETRIEVAL USING HIERARCHICAL
K-MEANS

In this paper, we focus on an indexing and retrieval technique for ob-
taining the reference points for a given query. In standard IR-DTW
we compute distances for a given query qi with all the reference
points and compare the scores to a given threshold θ to select the
closest reference points. When dealing with large scale databases,
computing distances for all the reference points is time consuming
and is a hindrance for real time systems.

In this paper, we propose an indexing type of approach to over-
come the problems with the exhaustive search. We use a hierarchical
K-Means clustering based approach to cluster all the reference data
points. A given query point qi traverses the tree to retrieve the clos-
est reference points. In this approach the query point qiis no longer
compared with each of the reference points but only with a few clus-
ter centers. Cluster centers which are closest to the query point qi,
based on a threshold, are selected and all the reference points be-
longing to those clusters are retrieved. A detailed description of the
indexing and retrieval is given in sections 3.1 and 3.2.

3.1. Indexing the reference vectors

The reference points are indexed using hierarchical K-Means. Each
node in the tree corresponds to a cluster. Each cluster can be further
divided into sub-clusters based on some criteria. All the leaf nodes
contain the indices of the reference points. The goal is to index the
data in the form of a tree where similar reference points lie within
the same node (or cluster).

Splitting each of the nodes in the tree is based on the number
of points present in the given node. This is to make sure that the
nodes do not contain too many reference points, which would result
in increased false alarms.

In building the hierarchical K-Means tree, we define K which is
the maximum number of children a given node can have (provided
it satisfies the splitting criteria). Each of the inner nodes will have
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a minimum of 2 children and a maximum of K. For simplicity K-
Means initialization was done using random selection of the data
points.

At times, a given node has a large number of data points but the
cluster is very dense to make any further partitions. For such clusters,
the clustering algorithm is performed again by choosing K=2. For
these nodes, the first center initialization is randomly selected and
the second center is chosen by selecting a point farthest from the
first. This is to ensure that the clusters are as small as possible. A
minimum cluster size of 200 reference points is considered to make
sure that the clusters have some minimum number of points.

Although the initial building of the hierarchical K-Means clus-
tering and indexing of the reference data is done offline, the standard
K-Means is quite slow on large databases. We have used a variant
of K-Means clustering called mini-batch K-Means algorithm [14] to
solve this problem. In mini-batch K-Means clustering for each it-
eration we randomly select a subset of data and perform a standard
gradient descent method to converge to a local minimum. In [14], it
was shown that mini-batch K-Means converged to a local minimum
with several orders of magnitude faster than the standard K-Means.

In our implementation of the hierarchical K-Means for a large
collection of reference points, we have randomly selected 10,000
reference points to perform the gradient descent approach. This se-
lection and updating of the centers was done for 100 iterations and
whenever the number of reference points fall below 10,000 a stan-
dard K-Means was performed.

3.2. Fast retrieval of reference vectors

Clusters qualified for
the node selection criteria

Otherwise

.....

...
..

...
..

...
..

...
..

Reference data points

Fig. 1. Tree traversal in hierarchical K-Means tree to retrieve the
reference data.

All the reference vectors are indexed using a hierarchical K-
Means tree. In the tree data structure the leaf nodes contain the in-
dices for all the reference data vectors. Tree traversal is based on the
same thresholding condition, θ, used in algorithm 1. Each internal
node of the tree only stores the centers obtained by K-Means clus-
tering and the width of the cluster (node). Let qi be a query point
and cj be any cluster center and the distance between them is given
by d(qi, cj). We also define the width of a node ci as the maximum
distance of the cluster center and the points lying inside the given
cluster, and is represented as w(ci). The node selection criteria for
retrieval is as shown in equation 1

d(qi, cj)

w(cj) + θ
≤ β (1)

where β is called the overlapping factor. The smaller the value of the
overlapping factor the more likely the selection of the node will be.
β plays a role in maintaining a balance between speed and accuracy.
As shown in tables 2 and 4, smaller values of β indicate a strict
selection process of the node and increases the speed of IR-DTW
while larger values of β show better performance.

As shown in figure 1, breadth first traversal is performed on the
hierarchical K-Means tree to obtain the required leaf nodes. For a
given query qi, whenever the condition for node selection fails, all
its children nodes are rejected and are not traversed. All the leaf
nodes that have passed the node selection criteria are selected and
the reference points belonging to these leaf nodes are retrieved to
populate the △T. During retrieval we do not compute the distances
with any of the reference points but only verify with the cluster cen-
ters of the leaf nodes using the node selection criteria.

4. EXPERIMENT AND RESULTS

The proposed algorithm is evaluated using MediaEval 2012 data
which is a subset of Lwazi database [15]. The data consists of audio
recorded via telephone in four of 11 South African languages avail-
able in the Lwazi database. We have considered two data sets, de-
velopment (dev) and evaluation (eval) with a common set of query
audio data for both of them. The statistics of the audio data is as
shown in table 1

Data # Utts Total (h) Average (sec)
dev 1580 3.69 8.42
eval 1660 3.87 8.40

query 200 0.08 1.47

Table 1. Statistics of the development (dev), evaluation (eval) and
audio query used to validate the performance of Hierarchical K-
Means based IR-DTW.

All the evaluations were performed using the NIST evalua-
tion [16] criteria and the corresponding max term weighted values
(MTWV) are reported. A more detailed information on the evalua-
tion is provided in [17].

39 dimensional mel-frequency cepstral coefficients (MFCC)
were extracted with 25 ms window length and 10 ms window shift.
These 39 dimensional MFCC were used to train 128 modified Gaus-
sian mixture model (GMM) [7]. The MFCC’s are then transformed
to their corresponding Gaussian posteriorgrams. All the experiments
were performed using such Gaussian posteriorgrams.

For the K-Means clustering the maximum value of K was set
to 8. To avoid clusters with very few points, the minimum number
of points in a cluster is set to 200 data points. A constant frame
threshold of θ = 4 was considered for all the experiments. The
results reported in tables 2 and 3 using S-DTW, exhaustive and tree-
based IR-DTW were implemented in Python1 using Numpy package
[18].

In table 2, MTWV scores indicate that the IR-DTW with exhaus-
tive search performs better than the S-DTW, and that the proposed
tree-based IR-DTW shows a similar performance to that of exhaus-
tive IR-DTW for β = 0.5.

In standard IR-DTW we do an exhaustive search for all the ref-
erence points whose similarity measure is less than θ. Using hier-
archical K-Means we retrieve all the points in a given node that sat-
isfy the condition given in equation 1. Table 2 scores show that the

1http://www.xavieranguera.com/resources/TREE-IR-DTW.zip
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Exp. S-DTW IR-DTW tree-based IR-DTW
β = 0.4 β = 0.5 β = 0.6

dev 0.336 0.364 0.295 0.364 0.339
eval 0.337 0.357 0.269 0.334 0.335

Table 2. Maximum term weighted values (MTWV) of S-DTW, ex-
haustive IR-DTW and tree-based IR-DTW for various values of β.

tree-based IR-DTW for β = 0.5 performs better than for β = 0.6
because for β = 0.6 there are a lot of reference points which are
not similar to a given query point. In the proposed method, unlike
the exhaustive search, some of the reference points retrieved have a
distance measure for a given query qi greater than θ. This is because
we do not validate any reference points but only verify whether the
cluster center of the leaf node passes the node selection criteria or
not.

To validate the performance of the system we need to define the
terms coverage, relevance and miss percentage:

Coverage: Percentage of reference points retrieved from the
complete reference data set.
Relevance: Percentage of reference points retrieved which
are relevant, i.e. the percentage of retrieved reference points
whose distance from a given query qi is below a defined
threshold θ.
Miss: Percentage of reference points which are closer to the
query but have not been selected. This occurs when a partic-
ular cluster fails the node selection criteria but has reference
points close to the given query point.

Table 3 shows the average coverage, relevance and miss percentages
computed for the dev and eval data for the various β values.

A lower coverage percentage indicates that fewer reference
points have been retrieved which results in a speedup as there are
less points to be inserted into △T. Low coverage reflects a high
relevance percentage because many points retrieved from the leaf
node cluster are closest to the query and subsequently giving a high
miss percentage and resulting in a poor performance. A similar
explanation holds for high coverage resulting in a poor performance
in terms of accuracy and speedup. From tables 2 and 3, we conclude
that tree-based search performs better for β = 0.5. Even though the
proposed approach is missing 44.9% of the points for β = 0.5 it is
still able to find the matching paths.

β Coverage Relevance Miss Percentage
0.4 2.76% 96.12% 60.97%
0.5 4.59% 84.06% 44.91%
0.6 6.54% 69.53% 34.85%

Table 3. Average coverage and relevance scores computed for the
dev and eval data sets.

β = 0.6 β = 0.5 β = 0.4
Exp. R′ Alg.1 R′ Alg.1 R′ Alg.1
dev 869 1.5 1200 2.2 1840 4.4
eval 832 1.5 1224 2.5 1670 3.8

Table 4. Speed improvements for retrieval and in Algorithm 1 using
tree-based over exhaustive search IR-DTW

In table 4, for each β value we compute R′ and Alg.1 to compare
the computation time of tree-based IR-DTW over exhaustive where

R′ is the ratio of computation time in retrieving the reference points
(STEP 1) and Alg.1 is the ratio of total computation in retrieving
the reference points and updating the matching paths in △T (STEP1
and STEP 2 in Algorithm 1). There is a very big improvement in the
computation time as we are only comparing the query qi with the
cluster centers to retrieve all the relevant points.

In table 4, lower values of β indicate a lower coverage percent-
age resulting in the speedup in the retrieval of the reference points
and subsequently a speedup in the algorithm 1. On the other hand,
low values of beta have a higher miss percentage resulting in a poor
performance and is shown in table 2.

Algorithms Speedup
dev eval

S-DTW (Python) 13 14
IR-DTW (Python, exhaustive search) 7 7
IR-DTW (Python, tree-based search) 21 20
S-DTW (C++) 630 680
IR-DTW (C++, exhaustive search) 840 860
IR-DTW (C++, tree-based search, estimated) 2400 2450

Table 5. Speedup of S-DTW, exhaustive IR-DTW and tree-based
IR-DTW (β = 0.5) in Python and C++ implementation.

The speedup for IR-DTW is computed by the ratio of database
size (in sec.) and search time (in sec) per size of queries. Table
5 shows that the estimated speedup of tree-based IR-DTW is faster
than the one proposed in [13] using randomized hashing algorithms
and image processing techniques, which has a speedup of 800X.
Based on the increment shown for the Python implementation, the
estimated speedup for the tree-based C++ implementation is 2400X.

5. CONCLUSIONS AND FUTURE WORK

With the increase in multi-media data over the Internet, QbE-STD
has become important in providing a search mechanism to find spo-
ken queries in a spoken audio. Due to the limitations of training
Hidden Markov Models for automatic speech recognition for low-
resource languages, zero resource pattern matching techniques were
proposed. In general, approaches derived from the well known DTW
algorithms suffer from scalability problems. The proposed method
has shown an estimated speedup of 2400X.

Recently in [10] it has been shown that IR-DTW outperforms
the standard S-DTW in terms of memory (more than 10-fold). The
memory performance of IR-DTW has shown promising results and
is applicable for performing QbE-STD over large audio databases.
In this paper we proposed a hierarchical K-Means clustering based
approach to increase the performance of IR-DTW over exhaustive
search.

The number of tree leaves are important in determining the cov-
erage, relevance and miss percentage during retrieval of the nodes.
Due to the compactness of Gaussian posteriorgrams node splitting
was not possible beyond 200 clusters and as future work we plan on
looking at how to effectively split clusters with a high density of very
similar points.
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