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ABSTRACT

Data sparsity is one of the major bottlenecks in the field of Com-
putational Paralinguistics. Partially supervised learning approaches
can help leverage this problem without the need of cost-intensive
human labelling efforts. We thus investigate the feasibility of co-
training for exemplary paralinguistic speech analysis tasks spanning
along the time-continuum: from short-term-related emotion to mid-
term-related sleepiness and finally to long-term trait of gender. By
dividing the acoustic feature space with two views as independent
and sufficient as possible, the semi-supervised learning approach
of co-training selects instances with high confidence scores in each
view, and agglomerates them along with their predictions into initial
training sets per iteration. Our experimental results on official In-
terspeech Computational Paralinguistics Challenge tasks effectively
demonstrate co-training’s superiority over the baseline formed by
single-view self-training, especially for the short- and medium-term
tasks emotion and sleepiness recognition.

Index Terms— Computational Paralinguistics, Co-Training,
Semi-supervised Learning, Emotion, Sleepiness, Gender

1. INTRODUCTION

According to Abercrombie, “the conversational use of spoken lan-
guage cannot be properly understood unless paralinguistic elements
are take into account” [1]. Nowadays, Computational Paralinguistics
attract more and more interest in the field of speech and language pro-
cessing due to its potential broad application. For example, speakers’
intention interpretation, conversation analysis and mediation, health
detection, serving quality management, multimedia retrieval, more
sensitively and naturally communicative robotics, can indeed benefit
from paralinguistic information [2, 3].

There is, however, a crucial bottleneck in this field – data scarcity
[2] –, which limits Computational Paralingustics in real-world appli-
cation. Many approaches are trying to deal with this issue. Passive
learning (PL), where data instances are annotated by human expects
manually, is extremely time- and money-consuming. Thus, active
learning (AL) and semi-supervised learning (SSL) seem to be promis-
ing alternatives. AL, aiming to select the ‘most informative’ instances
from a large amount of unlabelled data, and mark them manually,
not only can actually save a lot of time and labour, but enhance the
performance in emotion recognition [4, 5]. In comparison with AL,
SSL annotates massive unlabelled data by a system trained on small
amount of labelled data automatically. This way without requiring
more efforts from experienced human annotators, attracts much at-
tention to enhance the robustness of existing classifiers [6]. Several
ways of SSL haven been investigated, of which the most common
way is ‘single-view’ self-training. This method is well evaluated in
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sound event [7], speech recognition [8, 9], and further tasks. Practical
studies by Google Voice Search show that SSL has in fact already
turned into common practice. In the related paralinguistics area, it
was shown to give a better result in cross-corpus emotion classifica-
tion [10]. Another approach of SSL – co-training –, as proposed in
[11], has drawn considerable attention recently [12, 6]. Co-training
assumes that the initial data can be divided into two (or more) disjoint
sets of features or ‘views’ at the problem at hand. Then, the instances
which are classified with high confidence score per view are added
with the predicted labels to the training set over repeated iterations.

The main purpose of this paper is to investigate whether ad-
ditional performance improvements can be obtained by applying
co-training in a large scale and realistic paralinguistic classification
task. According to [2, 3], a most intuitive taxonomy for paralinguistic
phenomena is along the time axis, from short-term states, like emo-
tion, confidence, stress, over medium-term phenomena, e. g., speaker
states like intoxication, sleepiness, health state, to long-term traits,
such as age, social status, personality, race, or gender. Albeit one
cannot expect this paper could cover all of these cases, we select
three common representative tasks to span the time continuum which
were officially studied in INTERSPEECH Challenges from 2009 –
2011: short-term-related emotion [13], mid-term-related sleepiness
[14], and long-term-related gender [15] of speakers.

In the following, we firstly introduce the three databases used
for evaluation (Section 2); then, we describe the algorithms used for
co-training and separation of features in Sections 3 and 4; further,
we investigate the performance of co-training in three paralinguistic
tasks (Section 5); finally, in Section 6 we conclude.

2. DATABASES

To investigate effectiveness of co-training in the paralinguistic field,
we selected three frequently used publicly available databases for our
experiments: the FAU Aibo Emotion Corpus, the Sleepy Language
Corpus, and the Agender database. The main tasks of the three
corpora cover different time-relations of paralinguistic groups from
the short-term state of emotion, over the medium-term phenomena
of sleepiness, to the long-term trait of gender. Speaker-independent
partitioning of instances is shown in Table 1. In the following, we
briefly introduce these three databases.

2.1. Emotion: FAU Aibo Emotion Corpus

Emotion recognition is evaluated on the FAU Aibo Emotion Corpus
(AEC) [16], the official corpus of the INTERSPEECH 2009 Emotion
Challenge (EC) [13]. It deals with recordings of children interacting
with Sony’s pet robot Aibo via German speech. The Wizard-of-Oz
controlled Aibo robot sometimes disobeyed children’s commands
thus provoking various emotional reactions. The recording was exe-
cuted at two different schools – MONT and OHM –, and feature 51
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Table 1. Databases: Number of speakers (spk.) and instances per partition (Train, Develop or Test) for three paralinguistic corpora – AEC,
SLC, and Agender. NEG: negative; IDL: idle; (N)SL: (non-)sleepy; C: children; M/m: male; F/f:female. No development set is defined on the
FAU Aibo Emotion Corpus. Agender test labels are not freely available.

AEC SLC Agender
# spk. # instances # spk. # instances # spk. # instances

NEG IDL Σ NSL SL Σ C M F Σ

Train 13m/13f 3 358 6 601 9 959 16m/20f 2 215 1 241 3 366 471 4 406 13 985 14 135 32 526
Develop 13m/17f 1 836 1 079 2 915 299 2 396 8 508 9 644 20 548
Test 8m/17f 2 465 5 792 8 257 14m/19f 1 957 851 2 808
Σ 21m/30f 5 823 12 393 18 216 43m/56f 5 918 3 171 9 089 770 6 802 22 493 23 779 53 074

children with 21 males and 30 females, with ages ranging from 10 to
13 years. For our experiments, we use the whole corpus consisting
of 18 216 chunks, and the 2-class labelling: NEGative (subsuming
angry, touchy, reprimanding, and emphatic) and IDLe (con-
sisting of all other states). AEC labels came from five annotators on
the word level.

2.2. Sleepiness: Sleepy Language Corpus

The Sleepy Language Corpus (SLC) [17], the official corpus of the
Sleepiness Sub-Challenge of the INTERSPEECH 2011 Speaker State
Challenge (SSC) [14], is employed for sleepiness recognition. To
build this corpus, 99 participants with an age range of 20–52 years
took part in six partial sleep deprivation studies. The recording took
place in a realistic car environment or in lecture-rooms, including read
and spontaneous German speech as detailed in [14]. To annotate the
value of sleepiness, the Karolinska Sleepiness Scale (KSS) was used
by the subjects and two raters. Scores ranging from 1–10 are given
from extremely alert (1) to cannot stay awake (10). For training and
classification purpose, the recordings (mean = 5.9, standard deviation
= 2.2) were binarised into two classes: not sleepy (‘NSL’) and sleepy
(‘SL’) with the threshold of 7.5 on the KSS.

2.3. Gender: Agender Database

For gender recognition, we choose the Agender database [18], the
official corpus of the INTERSPEECH 2010 Paralinguistic Challenge
(PC) Gender Sub-Challenge [15]. This database was collected by
an external company aiming to identify possible speakers of the
targeted age and gender groups. The participants were asked six times
to call an automated Interactive Voice Response system to repeat
given German utterances or produce free content. Each subject’s
six calls had to be done with a (mobile) phone in various recording
environments and alternative days in order to ensure more variation
of the voices. In the Challenge task, gender classification is treated as
a three-class task – Children, Male and Female.

3. CO-TRAINING

Co-training is a paradigm of SSL. In comparison with single-view
self-training, which regards the whole data as ‘single view’, co-
training is considered as a multi-view learning algorithm. It presumes
the features in the training data can be naturally separated into two
sets [11], or more [19]. Firstly, a small set of labelled data serves as
initial training material, and a large amount of unlabelled data are
candidates to be exploited. Then, the initial training set is divided
into two ‘views’, to build two classifiers based on these. After that,

Given:
• A small amount of labelled data L
• A large amount of unlabelled data U
• A learning domain with features X

Repeat:
• Split the domain features X into two views: X1, X2.
• Use X1 to train classifier h1, then classify U , after that

choose N1 examples with the most confident prediction
• Use X2 to train classifier h2, then classify U , after that

choose N2 examples with the most confident prediction
• Remove N1 ∪N2 from set U
• Add N1 ∪N2 to the labelled data L

Fig. 1. Algorithm of co-training.

each classifier recognises the whole unlabelled data and selects the
instances that are predicted with high confidence score. Finally, these
instances together with their predicted labels are added to the training
set. Likewise, in one iteration an instance is either discarded, added
once, added twice with the same label, or added twice with differ-
ent labels. The whole process repeats until a stopping criterion is
met. Figure 1 summarises the algorithm. Overall, thus, two views
‘learn’ mutually with additional informative instances, boosting the
robustness of the final hypothesis.

4. ACOUSTIC FEATURES AND SEPARATION

In order to keep in line with the INTERSPEECH Challenge 2009–
2011 conditions, we employ the same feature sets per task in our
experiments as in the respective original Challenge. Thus, for emotion
recognition, 384 features by brute-forcing based on 31 low-level
descriptors (LLDs) / 42 functionals are implemented; for sleepiness
detection, 4 368 features comprising 59 LLDs and 39 functionals
are used, and for gender classification, 450 features composed by 38
LLDs and 21 functionals. As in the Challenge baselines, the features
are extracted by our toolkit openSMILE [20]. For more details on the
LLDs and functionals, please refer to [13, 14, 15].

Co-training, as multi-view learning, relies on two assumptions:
compatibility and independence [11, 21]. Compatibility requires that
each view is sufficient to train a good classifier. The assumption of in-
dependence demands that the two sets are conditionally independent.
Aiming to approach the requested independence in a straight-forward
choice, we split the whole LLDs into three partitions: energy-related,
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Table 2. Feature separation based on LLDs. The symbols †, ∗, ]
indicate the feature group which view-1 of co-training bases on for
emotion, sleepiness, and gender recognition, respectively.

Group Features in Group
Energy- Sum of energy in auditory bands (loudness)
related∗ Sum of RASTA-style filtered auditory spectral

band energies
RMS Energy
RASTA-style filtered auditory spectral bands 1–
26 (0–8 kHz)
Spectral energy 25–650 Hz, 1 k–4 kHz

Spectral Zero-Crossing Rate
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90
Spectral Flux, Entropy, Variance, Skewness,
Kurtosis, Slope
F0, Probability of voicing
Jitter (local, delta), Shimmer (local)

Cepstral†,] MFCC 1–12

spectral, and cepstral. Taking the (largest) feature set for sleepiness
recognition as an example, Table 2 depicts this feature splitting. In
comparison to the LLD groups shown in [14], the feature separation
described in Table 2 differs – the one chosen here proved more suit-
able for the assumption of independence. For the other two tasks
of emotion and gender recognition, the feature separation rule is the
same. After dividing the whole feature domain into three partitions,
the distribution of features is rather unbalanced across partitions. To
solve this problem and satisfy the first assumption of sufficiency
for each view, we re-arrange the three groups into two views. That
is, the two groups including less features are agglomerated as one
view. In Table 2, the symbols of †, ∗, ] mark the feature group which
view-1 bases on for emotion, sleepiness, and gender recognition, re-
spectively (remember that, the feature sets differ from task to task).
Thus, the remaining two feature groups together each form view-2.
Eventually, attribution ratios of view-1/view-2 are obtained as 288/96,
2 294/2 074, and 240/210 for the three tasks, respectively.

5. EXPERIMENTS AND RESULTS

5.1. Experimental Setup

For classification, we employ Support Vector Machines (SVMs)
trained by the Sequential Minimal Optimization (SMO) algorithm
as implemented in the Weka toolkit [22], keeping in line with the
2009 EC [13], 2010 PC[15], and 2011 SSC[14]. Further, we exactly
follow the feature sets and classifier set-ups of the three Challenges:
SVMs with linear kernel and a complexity constant optimised on de-
velopment data of 0.05, 0.02, 0.1 for emotion, sleepiness and gender
recognition, respectively. To evaluate the co-training algorithm in
paralinguistics against a baseline formed by single-view self-training,
AEC, SLC, and Agender, as described in Section 2, serve as data for
emotion, sleepiness, and gender recognition. We randomly select
500 instances as initial human labelled training set from AEC and
SLC, and 4 000 instances from Agender due to its larger size, which
resembles approximately 3 %, 6 %, 8 % of each database. At each
new iteration, 100 instances are selected by each view of co-training.
Thus, for the baseline experiment of single-view self-training, 200 in-
stances are chosen per iteration to provide a fair comparison. Finally,

Table 3. Experimental set-ups for AEC, SLC, and Agender. R: round
number of whole processing; L: number of initial human labelled
training instances; N1+N2: number of instances selected by view-1
and view-2 per iteration; I: iteration times per round.

# R L N1+N2 I
AEC 5 500 100+100 25
SLC 5 500 100+100 20
Agender 5 4 000 100+100 20

25, 20, and 20 rounds of SSL iterations for AEC, SLC, and Agender
are executed. Furthermore, to reduce the influence of ‘lucky’ or ‘un-
lucky’ selection for the initial training set, we repeat five times with
different random generator initialisations (‘seeds’), leading to five
rounds of the whole iteration process executed. In addition, to deal
with class imbalance, instance upsampling is used per iteration for
emotion and sleepiness recognition. Details of the three experimental
set-ups are given in Table 3.

5.2. Performance Evaluation

For performance evaluation, we use unweighted average recall (UAR),
the sum of the recalls per class divided by the number of classes,
which is the official competition measure of the 2009 EC, 2010 PC,
and 2011 SSC. The chance level of UAR is 50.0 % for the binary
emotion and sleepiness classification, and 33.3 % for the three-class
gender classification.

Figure 2 displays the comparison of average performance and
standard deviations between co-training (dark grey histograms with
solid error lines) and single-view self-training (light grey histograms
with dotted error lines) in five independent rounds for the three exper-
iments based on the AEC, SLC, and Agender databases.

For the emotion recognition based on AEC, as seen in Figure 2 (a),
the best mean UAR obtained by co-training with two-view learning
based on feature partition in five independent rounds is 64.8 % UAR
at the 12th iteration (24 k instances combined by co-training). This
value boosts the initial mean UAR of 62.0 % UAR without any SSL
iteration at the .001 significance level in a one-side z-test, and even
greatly higher than the best mean UAR of 63.4 % achieved by single-
view self-training at the 15th iteration at the .05 significance level
(cf. Table 4). This improvement means that, the two-view SSL of
co-training incorporates more additional information than single-
view self-training. Further, one can also notice that the performance
degrades quicker than in single-view self-training after the highest
UAR gain. This phenomenon can probably be attributed to falsely
labelled data by both views when the instances with increasingly
lower confidence score are selected as iteration goes on, leading to
doubling or accelerating error numbers added per iteration.

Figure 2 (b) depicts the UAR for recognition of sleepiness based
on SLC. The gain obtained by co-training is also notable with a boost
in mean UAR of almost 4.1 %, and 2.2 % absolute in comparison to
the initial results (UAR of 65.1 %) and the best mean UAR achieved
by single-view self-training (UAR of 67.0 %), respectively. Both
improvements are significant at the .001 and .05 level (one-side z-test,
cf. Table 4).

Finally, Figure 2 (c) shows the performance for recognition of
gender based on the Agender database. It can been seen that, both
co-training and single-view self-training significantly increase the
initial UAR from 73.7 % to 75.8 %, and 75.7 %, at the significance
level of .001 and .001 in a one-side z-test (cf. Table 4), respectively.
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Fig. 2. Unweighted average racall (UAR) vs. number of iterations.
Comparison between single-view semi-supervised learning and co-
training in five independent rounds for three paralinguistic corpora –
AEC, SLC, and Agender.

Overall, in terms of UAR for emotion, sleepiness, and gender
recognition, the gain achieved by co-training based on feature multi-

Table 4. Classification evaluation comparison of co-training and
single-view self-training in five independent rounds for three corpora
of AEC, SLC, Agender. UAR: unweighted average recall; initial:
initial supervised learning result; delta: absolute improvement of
co-training over single-view self-training.

Mean of
UAR[%] initial self-training co-training delta
AEC 62.0 63.4 •◦ 64.8 •• 1.4 •◦
SLC 65.1 67.0 ◦◦ 69.2 •• 2.2 •◦
Agender 73.7 75.7 •• 75.8 •• 0.1 ◦◦

Significance levels [23]: ◦◦ not significant •◦ 0.05 •• 0.001

view is highly significant in comparison with the initial results of su-
pervised learning for all three tasks. This holds even when compared
to the baseline SSL approach. Details of performance improvement
are given in Table 4.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we evaluated the suitability of co-training in a large-
scale study of paralinguistic tasks classification, by investigating
the three representative cases of personal affect, speaker state, and
speaker trait recognition as various temporal aspects. The results
indicate that adding unlabelled data with a co-training algorithm can
significantly enhance the performance of initial supervised learning –
here by 2.8 %, 4.1 %, and 2.1 % UAR absolutely for emotion, sleepi-
ness, and gender classification –, and even impressively improve over
the performance of commonly used single-view self-training for the
former two cases with a mean UAR of 1.4 % and 2.2 % absolutely
(one-side z-test, p<.05). This renders co-training beneficial in real-
world applications of Computational Paralinguistics analysis, where
labelled data is sparse, but unlabelled data can be easily collected. of
our previous paralinguistic tasks recognition model.

Future work may focus on the question of how to best partition
features to fulfil sufficiency and independence of the views. This may
lead to partitioning also according to functionals rather than LLDs.
An obvious partitioning could also be by acoustic and linguistic
feature information, once the latter should be taken into account.

7. RELATION TO PRIOR WORK

Previous work of co-training has been tested on a broader range of
pattern recognition tasks such as web page classification: Co-training
takes the text on the page as one view and the anchor text of the hyper-
links as the other view in [11]. Further, a similar idea in the domain of
co-training for semi-supervised Expectation Maximisation is called
co-EM [24] and exploited for the same task. For human action recog-
nition, in [25] a boosted co-training algorithm is proposed, where
inter-view and intra-view confidence addresses the view-sufficiency
and dependence issues in co-training. In addition, co-training is also
researched in on-line biometrics [26], music mood [27], vehicle [28],
and handwritten word [29] classification.

For paralinguistic tasks recognition, up to now, first studies on
co-training focused on emotion [30, 31, 32], which, however, is just
one of manifold tasks in Computational Paralinguistics [2, 3]. In this
contribution, we provide a large-scale investigation of co-training
based on feature multi-view in a broader range of paralinguistics.
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[10] Z. Zhang, F. Weninger, M. Wöllmer, and B. Schuller, “Unsuper-
vised Learning in Cross-Corpus Acoustic Emotion Recognition,”
in Proc. IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), Big Island, HY, 2011, pp. 523–528.

[11] A. Blum and T. Mitchell, “Combining labeled and unlabeled
data with co-training,” in Proc. 11th annual conference on Com-
putational Learning Theory, Madison, WI, 1998, pp. 92–100.

[12] O. Chapelle, B. Schölkopf, A. Zien et al., Semi-supervised
learning. Cambridge, MA: MIT Press, 2006.

[13] B. Schuller, S. Steidl, and A. Batliner, “The INTERSPEECH
2009 Emotion Challenge,” in Proc. INTERSPEECH, Brighton,
UK, 2009, pp. 312–315.

[14] B. Schuller, S. Steidl, A. Batliner, F. Schiel, and J. Krajewski,
“The INTERSPEECH 2011 Speaker State Challenge,” in Proc.
INTERSPEECH 2011, Florence, Italy, 2011, pp. 3201–3204.

[15] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Devillers,
C. Müller, and S. Narayanan, “The INTERSPEECH 2010
Paralinguistic Challenge,” in Proc. INTERSPEECH 2010,
Makuhari, Japan, 2010, pp. 2794–2797.

[16] S. Steidl, Automatic Classification of Emotion-Related User
States in Spontaneous Children’s Speech. Berlin: Logos Verlag,
2009.

[17] J. Krajewski, A. Batliner, and M. Golz, “Acoustic sleepiness de-
tection - Framework and validation of a speech adapted pattern
recognition approach,” Behavior Research Methods, vol. 41, pp.
795–804, 2009.

[18] F. Burkhardt, M. Eckert, W. Johannsen, and J. Stegmann, “A
Database of Age and Gender Annotated Telephone Speech,” in
Proc. 7th International Conference on Language Resources and
Evaluation (LREC 2010), Valletta, Malta, 2010, pp. 1562–1565.

[19] Z. Zhou and M. Li, “Tri-training: Exploiting unlabeled data
using three classifiers,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 11, pp. 1529–1541, 2005.
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