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ABSTRACT

Several unsupervised methods have been proposed to seg-
ment a continuous text stream into individual topics. A simple
HMM formulation of the most successful of these methods
exposes their underlying assumptions and suggests the use of
a new prior for segmentation probability. Under this formu-
lation, we explore the space of possible modeling choices on
databases of English and French TV and radio programs. We
show that the proposed prior improves segmentation results
and can also accommodate additional knowledge sources wi-
thin the HMM efficient dynamic programming.

Index Terms— Story segmentation, Bayesian methods,
Graphical models, HMM, Topic models

1. INTRODUCTION

As audio data becomes increasingly available, the need
for indexing it grows accordingly. Even though transcripts in
the form of closed-captions, subtitles, or automatic speech re-
cognition may be available, they are usually not structured,
i.e. they consists in a single stream of text without individual
topic or story markers. The task we examine here is to seg-
ment a text into individual semantically coherent units, such
as topics or stories, into a linear sequence, for further proces-
sing or as a way to present search results to a user in reaso-
nable chunks. In the context of TV and radio programming,
unsupervised methods are clearly preferable, because of the
constantly changing nature of contents, unpredictability of to-
pics, and addition of new sources.

Approaches for segmenting text into topics fall in four
broad categories [1] : methods based on lexical dissimilarity,
such as LCSeg [2], on lexical cohesion, such as C99 [3], on
discriminative boundary detection with classifiers [4], or ge-
nerative models [5][6][7][8][9].

Generative models assume that text is generated from an
underlying sequence of topics. Each topic is associated with a
particular probability distribution on words, which is sampled
to generate words. The problem is then, given the sequence
of words in a text, to infer the underlying sequence of topics.
Hidden Markov models provide an efficient solution for both
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the inference and segmentation problems. However, the basic
HMM approach used by [5], as well as its latent concept ver-
sion aspect HMM [6], are entirely supervised and require an
annotated corpus for training. LDA-HMM is a Bayesian ver-
sion [7] which becomes entirely unsupervised. TextSeg is ano-
ther generative approach that is completely unsupervised and
has been proposed by [8] but does not rely on underlying to-
pics : instead, a language model is inferred for each individual
segment. To solve the problem of inferring language models
based on short segments, [9] presented a Bayesian version of
TextSeg. Currently [8] and [9] represent the most successful
unsupervised models when compared on standard databases,
either for manual or automatic text transcriptions [1].

In an effort to compare and analyze the assumptions be-
hind these two models, we show that when both are formu-
lated as a unified segmental HMM model, they differ only
in their choice of output probability model and prior seg-
mentation model. We propose a new prior for the segmenta-
tion probability and efficiently include cue word information
in the segmentation model. The last section concludes with
experimental results on TV and radio programs, in English
and French, which explore the space of possible modeling
choices, including the two original methods of [8] and [9] as
special cases.

2. TOPIC SEGMENTATION MODEL

In the following we present a particular version of an
HMM tailored to the topic segmentation task. It slightly dif-
fers from the common HMM formulation in that it models
whole segments instead of individual words or sentences.

Given a text to be segmented, made of sentences t =
1, . . . , T , assign a number to each possible segment boundary
position (gap) so that gap t falls between sentences t and t+1.
Thus gap 0 will be placed before the first sentence and gap
T after the last sentence. The corresponding topology for an
HMM is shown in figure 1 :

– A state corresponds to a gap t = 0, . . . T
– A transition between state t′ and state t corresponds to

a segment covering sentences t′ + 1 to t.
– A transition (or segment) j emits words Wt′+1 . . .Wt

from a distribution Θj , where Wt is the set of words
{Wt,n} in sentence t.
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Fig. 1. HMM topology and recursive computation of B(t).

Note that this topology is slightly different from a usual
HMM in that a transition does not correspond to a single word
or sentence, but rather to a sequence of sentences belonging
to a single segment.

Let’s define an indicator variable zt such that if sentence
t is in segment j, we have zt = j. Thus the HMM output
probability for segment j will be :

p(Wt′+1...t|zt′+1...t = j,Θj) (1)

and the transition probability for segment j will be :

p(zt′+1...t = j) (2)

Under a bag-of-words assumption which ignores the word
ordering in the segment, equation 1 can be further simplified
to :

p(Wt′+1...t|zt′+1...t = j,Θj) = p({Wt:zt=j}|Θj) (3)

The optimal segmentation is the one which maximizes the
joint likelihood :

p(W, z|Θ) = p(W|z,Θ)p(z) (4)

where W is the set of all words over all T sentences, z
is the vector z1...T which assigns a segment to each sentence,
and Θ is the set of language models {Θzt}. The last term in
the right-hand side is the prior segmentation probability.

The well-known recursive solution for equation 4 allows
an efficient dynamic programming implementation. Consider
a segment j between gap t′ and gap t, as illustrated in figure
1. This segment’s contribution to the total likelihood will be :

b(t′, t) = p({Wt:zt=j}|Θj)p(zt′+1...t = j) (5)

The objective function B(t) is the maximum likelihood
segmentation over all segmentations ending at gap t and has
the recursive expression :

B(t) = max
t′<t

B(t′)b(t′, t) (6)

Together, equations 5 and 6 allow us to recursively com-
pute B(t), from t = 0 to t = T , starting at t = 0 with initial
value B(0) = 1.

2.1. Relationship to previous models

[8] directly formulates his model as an HMM with a topo-
logy defined as in the previous section. [9] starts from a model
more directly related to latent topic models, but introduces a
topic switching variable with a constraint which imposes a li-
near segmentation, with a single, different topic for each seg-
ment. Both models use the same recursive equations 5 and 6
to compute the best segmentation. However, each makes use
of different values and assumptions for the output probability
p(W|z,Θ) and prior segmentation probability p(z). In the
more general framework presented here, we can better ana-
lyze their choices and suggest new solutions.

2.1.1. Segmental output probabilities

Equation 3 corresponds to a language model for each
segment. [8] assumes a language model where the word
probability is based on the relative word frequency in the
segment, and uses Laplacian smoothing. His expression for
p({Wt:zt=j}|Θj) is simply :

plm({Wt:zt=j}) =

V∏
i=1

cj,i + 1∑V
i=1 cj,i + V

where cj,i is the number of occurrences of word i in segment
j, Cj =

∑V
i=1 cj,i is the total number of words in the seg-

ment, and V is the vocabulary size.
Another natural choice for the output probability dis-

tributions {Θzt} is a multinomial language model Wt ∼
Multinomial(βzt). Using a point estimate for {βzt} results
in :

pmult({Wt:zt=j}|β0) =

V∏
i=1

cj,i + β0∑V
i=1 cj,i + V β0

As pointed out by [9], Laplacian smoothing as used in [8]
is a special case of this expression, with β0 = 1.

Instead of using a point estimate, [9] proposes a Baye-
sian approach to marginalize over all possible language mo-
dels, assuming a Dirichlet prior for the multinomial. The cor-
responding Dirichlet compound multinomial distribution is
conditioned on a prior parameter β0 :

pdcm({Wt:zt=j}|β0) =
Γ(V β0)

Γ(Cj + V β0)

V∏
i=1

Γ(cj,i + β0)

Γ(β0)

Note that in the equation given here, the numerator inside
the product term differs from the numerator given in [9].

2.1.2. Segmental transition probabilities

For the prior segmentation distribution p(z) in equation
4, [9] simply assumes that all valid segmentations have pro-
bability one, i.e. p(z) = 1, and ignores the term. As this tends
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to produce stretches of unreasonably small segments, a more
recent work [10] introduces a prior probability based on the
expected segment duration. [8] has also introduced a segment
penalty corresponding to p(zt′+1...t) = 1

N where N is the
number of words in the segment. Complexity theory is invo-
ked to justify this value, and the suggested penalty reflects the
amount of bits needed to encode a segmentation.

Assuming an ergodic HMM model, we propose here a
simple choice for a non-informative prior distribution on p(z),
ignoring the left-to-right structure of figure 1 for simplifica-
tion. We allow a transition from every node to every other
node with equal probability, thus the probability that a seg-
ment starts at t′ and ends at t is constant p(zt′+1...t) = 1

T .
Note that this prior is determined solely by the number of sen-
tences in the text. It is not a parameter of the model to be set
externally, such as the expected segment duration parameters
d proposed in [10].

More informative priors p(z) can also be considered, ta-
king account of other information about the segmentation,
with the advantage of avoiding hard decisions, since decisions
consider both the current data and the prior evidence. Any
prior probability that answers the Markov property, i.e. can
be computed by considering only the segment and its starting
point, can be used in the recursive solution.

Examples of suitable informative priors include informa-
tion about pauses or prosody that provide a probability of
a boundary at certain gaps. Another example is the use of
linguistic markers. We propose to use cue words which can
signal a change between topics (such as ”welcome”, ”thank
you”, ”this was ...”). This was implemented by incrementing
the segment prior probability whenever its first or last sen-
tence contains one of these markers. Since this change is only
dependent upon the current segment’s content, it can be easily
incorporated into the dynamic programming search.

The use of prior p(z) to model cue words contrasts with
the approach of [9] in which output probabilities for cue
words are obtained with a distribution that is shared across
topics, which renders dynamic programming inference inap-
plicable.

3. EXPERIMENTS

Table 2 summarizes the corpora used in the experiments.
TDT4 TV is an extract of the standard TDT4 NIST corpus
containing only TV broadcast news and is used here to pro-
vide a reference for comparison with other published work
on the same database. CD is an in-house Canadian database
which includes TV and radio programming, covering a va-
riety of subjects, from broadcast news to talk shows. CD EN
contains texts in English language, and CD FR in French.
Texts are uncorrected closed-captions as they were captured
with each program. To provide the ground-truth, all CD data
was manually segmented into topics by human experts, libra-
rians specialized in searching newspapers, newswires and TV

and radio transcripts.

Corpus Sentences Shows Stories
TDT4 TV 69013 276 7026
CD EN 17744 62 1124
CD FR 8629 36 559

Table 2. Corpora used in experiments.

The experiments consisted in running an implementation
of the proposed HMM segmenter on each of the three cor-
pora, for the alternative output probability distributions from
section 2.1.1, and the segmentation probability distributions
from section 2.1.2. These combinations include the models
originally proposed in [8] and [9]. We checked that our im-
plementation results for [8] matched exactly the results from
the author’s publicly available code on the same data.

For cue word experiments, 11 French and 7 English
cue words were manually selected from different transcri-
bed shows, from broadcasters that do not appear in the test
corpora.

3.1. Performance metrics

Commonly used performance metrics include FA/FR,
WD and Pk [1], but Pk has been the most popular mea-
sure in the past and there is an abundant litterature providing
values of Pk for various systems. Pk measures the average
probability of segmentation error. It uses a a window of k
sentences that is slided over the text, at each step checking if
the hypothesized segmentation is correct about the two ends
of the window belonging (or not) to the same segment.

The value of k used for measuring Pk was chosen as the
one which produced scores as close as possible to Pk = 0.5
for trivial segmentations placing boundaries at every gap, or
without any boundaries, or with boundaries placed at random
(with equal probability at each gap equal to the inverse ave-
rage reference segment length). Thus one value of k was de-
termined for each reference segmentation using solely the re-
ference.

Although many limitations of Pk have been pointed out
in past studies and alternative measures have been proposed,
here we encountered a major problem with segmentations
that can contain segments of unrealistic length while having
a good Pk. This was also observed in [10] where the gap
between Pk and WD metrics was explained by the gene-
ration of spurious short segments. In an effort to quantize
this phenomenon, we provide an additional measure of the
quality of the segmentation, the Pearson statistic X2 for the
segment length, which indicates how different the segment
length distributions are in the hypothesized and reference

8457



A B C D E F G
Transition probability 1

N
1
N

1
T

1
T 1 1

T
1
T · p(cue)

Output probability plm pmult plm pmult pdcm pdcm pdcm

β0 1.0 0.8 1.0 0.8 0.6 0.2 0.2
TDT4 TV Pk 0.25 0.24 0.23 0.23 0.20 0.21 0.20

X2 1.86 1.70 1.62 1.47 1.28 0.99 0.80
β0 1.0 1.3 1.0 1.4 0.7 0.4 0.4

CD EN Pk 0.30 0.27 0.29 0.26 0.22 0.24 0.25
X2 2.34 2.61 1.89 2.37 2.26 1.80 1.16
β0 1.0 1.5 1.0 1.7 1.2 0.6 0.7

CD FR Pk 0.28 0.22 0.29 0.21 0.17 0.19 0.18
X2 2.10 2.21 1.77 2.42 3.11 1.83 1.34

Table 1. Topic segmentation results according to choices of model output and transition probabilities.

segmentations :

X2 =

n∑
i=1

(Si −Ri)
2

Ri

where Si and Ri are the relative frequencies of segment
length i for the hypothesized segmentation and reference seg-
mentation, respectively. Segment length is measured as the
number of sentences in a segment. More similar hypothesized
and reference distributions means X2 closer to zero.

3.2. Results

Table 1 presents the results obtained on the three corpora,
each column corresponding to a particular combination of
output probability model and prior segmentation model. For
each corpora, the best value of Pk andX2 is boldfaced (smal-
ler values indicate better results). The value of β0 given in
the table was determined by an oracle, i.e. chosen for pro-
ducing the best Pk on the test set. In a realistic test scenario
β0 would have to determined by another method such as cross
validation, but here the β0 selection method is comparable for
all models. Column A corresponds to the original TextSeg [8]
model, and column E to the model of [9]. The model of [10]
requires an additional parameter d that controls the granula-
rity of segmentation and has to be set to the expected segment
duration, and is not compared here.

It first appears that column E is best, as it consistently
gives lower values of Pk. However corresponding X2 values
are higher than for other pdcm models, meaning that its seg-
ment length distribution is farther from the reference. Overall,
column F and G provide low values both for Pk and X2.

As a choice for output probabilities, pdcm outperforms
pmult which itself outperforms plm. This is clear when com-
paring columns C, D, and F, across all corpora (for the same
segmentation prior). The proposed prior 1

T slightly but consis-
tently outperforms the complexity penalty 1

N of [8], but when
used in conjunction with pdcm, it improves X2 but not Pk.

Finally, column G shows that including other knowledge
sources such as cue words can be effective ; while not pro-
viding significant improvements on Pk, it provides the best
segmentations in terms of length distribution relative to the
reference, as measured by X2.

4. CONCLUSION

In this work, we formulated a unified segmental model
which includes both [9] and [8] as special cases, and showed
how they differ in their choice of output probability model and
prior segmentation model. We proposed a new prior which
preserves the low segmentation error rate of both methods but
improves quality in terms of segment length distribution. This
new prior also provides a mechanism to include other sources
of knowledge, such as cue words, within the HMM dynamic
programming algorithm, thus overcoming a major limitation
of [9]. The proposed non-informative prior generally provides
a lower error rate, and when linguistic cues are incorporated,
it obtains the best results in terms of combined segment error
rate and segment length distribution, and can be used directly
in the HMM model without compromising its efficiency.
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