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ABSTRACT

This paper applies the latent words language model (LWLM)
to automatic speech recognition (ASR). LWLMs are trained
taking into account related words, i.e., grouping of similar
words in terms of meaning and syntactic role. This means, for
example, if a technical word and a general word play a sim-
ilar syntactic role, they are given a similar probability. This
is expected that the LWLM performs robustly over multiple
domains. Furthermore, we can expect that the interpolation
of the LWLM and a standard n-gram LM will be effective
since each of the LMs have different learning criterion. In
addition, this paper also describes an approximation method
of the LWLM for ASR, in which words are randomly sam-
pled on the LWLM and then a standard word n-gram language
model is trained. This enables us one-pass decoding. Our ex-
perimental results show that the LWLM performs comparable
to the hierarchical Pitman-Yor language model (HPYLM) in a
target domain task, and more robustly performs in out-domain
tasks. Moreover, an interpolation model with the HPYLM
provides a lower word error rate in all the tasks.

Index Terms— Latent words language model, Hierarchi-
cal Pitman-Yor language model, Sampling-based implemen-
tation.

1. INTRODUCTION

Language models (LMs) are necessary to modern automatic
speech recognition (ASR) systems. Word n-gram LMs are
still widely used because of simplicity and compatibility to
ASR [1]. For example, it is easy to express a word n-gram LM
as a weighted finite state transducer (WFST). However, the
word level modeling suffers from the data sparseness prob-
lem.

Smoothing is a fundamental technique to mitigate the data
sparseness problem [2]. While various smoothing methods
have been proposed, the Kneser-Ney smoothing is known to
be one of the most accurate methods [3]. Its mechanism
has been also revealed through the theory of the hierarchal
Pitman-Yor process [4]. In fact, the hierarchal Pitman-Yor
language models can achieve a slightly superior performance
comparing to the Kneser-Ney method in the use for ASR [5].

An alternative approach to the data sparseness problem
is clustering. It includes class n-gram LMs [6]. Similar ideas
have been employed in decision tree LMs [7] and random for-
est LMs [8], in which context information is clustered into
some groups. Neural network based LMs can also mitigate
the data sparseness in another way, in which the dimension-
ality of word space is reduced [9, 10]. These methods are
trained based on different criteria in learning. The combina-
tion of these methods is known to be effective in ASR [11].

The latent words language models (LWLM) was recently
proposed in the machine learning area [12]. LWLMs are
trained taking into account latent words and this is the ap-
proach of the LWLM to the data sparseness problem. Latent
words are a class in fact. Similar words to a latent word have
similar probabilities. For example, fruit related words are
occurred with a high probability in the latent word (class) of
‘orange’. If a technical word and a general word are similar
in terms of syntactic role, the LWLM is trained so that these
words have a similar probability. This means that an LWLM
trained with an academic lecture corpus may accurately per-
form with other corpora. In short, the LWLM is expected to
perform robustly over multiple domains. Furthermore, the
criterion of training an LWLM much differs from that for a
standard word n-grams LM. Therefore, the interpolation of
the both LMs would be effective to degrade word error rate
(WER) in ASR.

However, it is difficult to use an LWLM for one-pass de-
coding because of soft-decision clusters. Each word appears
in all latent words. This seriously affects the search pro-
cess. This is described in detail in 3.3 section. To over-
come this problem, we propose a method based on sampling
of words. First a text is made by sampling words in random
on an LWLM. Then a standard word n-gram LM is trained
from the generated text. In this paper, the HPYLM is used for
this purpose. This model approaches the LWLM as increas-
ing sampled words. In fact, a similar sampling approach has
been succeed in neural network based LMs [13].

This paper is organized as follows. First, HPYLM is
briefly described in section 2. Section 3 explains LWLM
and the sampling based method. Section 4 describes our
experimental results and then section 5 concludes this paper.
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2. HIERARCHICAL PITMAN-YOR LANGUAGE
MODEL

HPYLM is a theoretically elegant Bayesian language model
based on the Pitman-Yor process, which was first proposed in
the machine learning field [4].

HPYLM is a kind of n-gram LMs, which defines proba-
bility distribution over current word wk given context uk =
wk−n+1, ..., wk−1. The probability distribution is defined as
Eq. (1).

Phpy(wk|uk,X) =
∑
S

Phpy(wk|uk,S)P (S|X). (1)

X is training text data, and S is a seating arrangement
defined by the Chinese restaurant franchise representation of
the Pitman-Yor process. In HPYLM, Bayesian inference is
analytically intractable, so the Gibbs sampling technique is
used as a feasible approximation by Eq. (2).

Phpy(wk|uk,X) ≈ 1

I

I∑
i=1

Phpy(wk|uk,Si). (2)

Phpy(wk|uk,X) can be approximately obtained by col-
lecting I samples of S. Under a seating arrangement S,
Phpy(wk|uk,S) is calculated by Eq. (3).

Phpy(wk|uk,S) =
c(wk,uk)− d|uk|t(wk,uk)

θ|uk| + c(uk)

+
θ + d|uk|t(uk)

θ|uk| + c(uk)
Phpy(wk|π(uk),S). (3)

π(uk) is the shortened context obtained by removing the
earliest word from uk. c(wk,uk) and t(wk,uk) are parame-
ters based on the Chinese restaurant franchise representation.
d|uk| and θ|uk| are discount and strength parameters of the
Pitman-Yor process, respectively.

3. LATENT WORDS LANGUAGE MODEL

3.1. Definition

LWLMs are generative models with a latent variable for every
observed word in a text. The structure of LWLM is shown in
Fig. 1. The latent variable, called latent word hk, is generated
by its context lk = hk−n+1, ..., hk−1, and observed word wk

is generated from latent word hk, i.e.,

hk ∼ P (hk|lk,Θ), (4)

wk ∼ P (wk|hk,Θ). (5)

Fig. 1. Structure of LWLM.

Θ is model parameters of LWLM. LWLM has a similar
structure to the standard class n-gram LM, as noted in Eq. (4)
and Eq. (5). The latent word corresponds approximately to
the class of the stamdard class n-gram LM. LWLM has soft
clustering structure which is different from a simple hard clus-
tering structure. In the hard clustering structure, word only
belongs to one class. But, in the soft clustering structure,
word belongs to multi classes. In fact, word belongs to all
the classes in LWLM. If word wk is related to latent word hk,
it has high probability P (wk|hk); conversely, its probability
is low if wk not similar to hk.

3.2. Inference

Inference in LWLM is to estimate latent words assignments
H of all observed words W in the text data. In fact, Θ means
W and H . We use the Gibbs sampling for inference. A
probability distribution of possible values for latent word hk

is computed by Eq. (6).

P (hk|Θ−k) =

P (wk|hk,Θ
−k)

∏k+n−1
j=k P (hj |lj ,Θ−k)∑

hk∈V P (wk|hk,Θ−k)
∏k+n−1

j=k P (hj |lj ,Θ−k)
. (6)

Θ−k denotes W and H−k that is all latent words except
for hk. Gibbs sampling can be realized to sample a new value
for the latent word according to this distribution and place it
at position k.

Arbitrary smoothing methods can be applied to the proba-
bility distributions P (hk|lk,Θ) and P (wk|hk,Θ). Although
Kneser-Ney smoothing is used in [12], in this paper, we apply
the Bayesian framework to the two probability distributions.
We construct P (hk|lk,Θ) as HPYLM, and apply the Dirich-
let smoothing to P (wk|hk,Θ) [14], which are calculated as
Eq. (7) and Eq. (8), respectively.

P (hk|lk,Θ) = Phpy(hk|lk,H), (7)

P (wk|hk,Θ) =
c0(wk, hk) + αP0(wk)

c0(hk) + α
. (8)
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P0(wk) is the ML estimation value of unigram probability
in the training text data. c0(wk, hk) and c0(hk) are counts
calculated from W and H . α is a hyper parameter used by
Dirichlet smoothing.

3.3. Problems in direct use for ASR

If we directly implement LWLM to one-pass decoding, we
have to calculate the probability distribution over current
word wk given context uk,

Plw(wk|uk,X) ≈

1

T

T∑
τ=1

∑
lk,hk

P (wk|hk,Θτ )P (hk|lk,Θτ ). (9)

It is shown in Eq. (9) that we have to consider two
kinds of summation. First, we have to consider all pos-
sible class assignment since LWLM has a soft clustering
structure. In the case of a hard clustering structure such as
standard class n-gram LM, class assignment can be identified
uniquely, so we only have to calculate one P (wk|hk,Θτ )
and one P (hk|lk,Θτ ). In the case of the soft clustering
structure, however, we have to calculate P (wk|hk,Θτ ) and
P (hk|lk,Θτ ) with each combination of lk with hk. It is
impractical to compute them for online decoding.

Second, LWLM uses T instances of Θ for Bayesian in-
ference. This means that we have to possess T class n-gram
structures for decoding. It is hard because enormous memory
is needed to handle each class n-gram LM.

3.4. Sampling based approximation

We propose a method that approximates an LWLM to use in
ASR. As LWLM is a generative model, it is possible to gener-
ate latent words and observed words. After sampling words,
we train a standard word based n-gram LM from the observed
words generated in random based on Algorithm 1.

Algorithm 1 Random sampling on LWLM.
for κ = 1 to K do
Θτ ∼ P (Θτ ) =

1
T

hκ ∼ P (hκ|lκ,Θτ )
wκ ∼ P (wκ|hκ,Θτ )

end for

Through iterations, we can obtain a large number of sen-
tences. By iterating K times, we can generate K latent words,
and K observed words. We only use observed words for word
n-gram LM estimation. It can be expected that the word n-
gram LM approaches the LWLM as increasing the iterations.
For the word n-gram LM, we used HPYLM.

Table 1. Experimental data set.
Domain # of words

Training Lecture 7,317,392
Development Lecture 28,046
Test A Lecture 27,907
Test B Contact center 24,665
Test C Voice mail 21,044

4. EXPERIMENTS

4.1. Experimental conditions

Our Experiments employed the Corpus of Spontaneous
Japanese (CSJ) [15]. We divided the CSJ into training set,
development set, and test set. In addition, we used a contact
center task and a voice mail task for evaluation in out-of-
domain environments. Table 1 shows detail.

We used triphone HMM acoustic models for each domain.
The speech recognition decoder is VoiceRex, a WFST-based
decoder [16, 17]. JTAG was used as the morpheme analyzer
to split sentence into words [18].

In this paper, we trained trigram LM and count cutoff
pruning was not used. Vocabulary size of the training data
was 83,536. We compared four methods:

1. MKNLM: Word N-gram LM with Modified Kneser-
Ney constructed from the training set.

2. HPYLM: Hierarchical Pitman-Yor LM constructed
from the training set.

3. LWLM: LWLM based on sampling-based approxima-
tion.

4. LWLM+HPYLM: Mixed model which combined both
HPYLM and LWLM by linear interpolation.

We used 200 iterations for burn-in, and collected 10 sam-
ples to train HPYLM. And we used 500 iterations for burn-in,
and collected 10 samples to train LWLM. The interpolation
weights and hyper parameters were optimized for the devel-
opment set.

4.2. Experimental results

We investigated the relation between data size generated by
random sampling and perplexity (PPL) reduction. We con-
structed LWLM and LWLM+HPYLM by varying the gener-
ated data size and computed the corresponding PPL. We plot
the results in Fig. 2, where the horizontal axis is in log-scale.

Fig. 2 shows that PPL by LWLM was reduced as the
generated data size increased. When 103 M words were gen-
erated, PPL by LWLM was comparable to that by HPYLM,
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Fig. 2. Relations between data size generated by random sam-
pling and perplexity

Table 2. PPL results.
Setup Test A Test B Test C
MKNLM 79.32 164.07 189.91
HPYLM 67.50 158.13 175.62
LWLM 66.93 141.34 147.87
LWLM+HPYLM 62.05 134.65 141.23

Table 3. WER results (%).
Setup Test A Test B Test C
MKNLM 28.80 49.32 40.78
HPYLM 27.94 48.72 40.68
LWLM 27.85 46.86 38.71
LWLM+HPYLM 26.42 46.19 37.92

and PPL reduction approached convergence. This result
shows that we can construct LWLM comparable to HPYLM
if we generate sufficient text data. Moreover, highest per-
formance was achieved with LWLM+HPYLM. This results
shows that LWLM possesses properties different from those
of the HPYLM, and further improvement is achieved if they
are combined.

In the evaluation for each test set, we used generated data
size: 103 M. PPL results are shown in Table 2, and WER
results are shown in Table 3.

With regard to Test A, same domain as training and de-
velopment set, the PPL results are similar to those from
the evaluation of development set. LWLM is comparable
to HPYLM, and LWLM+HPYLM achieved highest perfor-
mance. In the WER result, we obtained WER reduction by
LWLM+HPYLM compared to HPYLM.

On the other hand, in Test B and C, out-of-domains,

LWLM achieved remarkably high performance compared to
HPYLM in terms of PPL and WER results. This result shows
that LWLM robustly handles speech domains different from
that of the training data. It seems that the learning criteria,
which identify related words, are effective in expanding the
versatility of LMs.

5. CONCLUSIONS

In this paper, we applied LWLM to ASR. LWLM can consider
the related words in the given context, and our expectation
was that LWLM could robustly handle various domain, and
that its combination with standard word n-gram LM would be
effective.

To implement one pass decoding, we proposed a method
which approximates LWLM as a structure suitable for ASR.
We randomly generate text data according to the stochastic
process in LWLM, and train standard word based n-gram LM
from the generated text data.

Experiments showed that LWLM provided comparable to
HPYLM if the speech has the same domain as the training
set, and performed robustly over multiple domains. More-
over, we could achieve the highest performance by combining
HPYLM with LWLM.
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