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ABSTRACT

Egyptian Arabic (EA) is a colloquial version of Arabic. It
is a low-resource morphologically rich language that causes
problems in Large Vocabulary Continuous Speech Recogni-
tion (LVCSR). Building LMs on morpheme level is consid-
ered a better choice to achieve higher lexical coverage and
better LM probabilities. Another approach is to utilize infor-
mation from additional features such as morphological tags.
On the other hand, LMs based on Neural Networks (NNs)
with a single hidden layer have shown superiority over the
conventional n-gram LMs. Recently, Deep Neural Networks
(DNNs) with multiple hidden layers have achieved better per-
formance in various tasks. In this paper, we explore the use of
feature-rich DNN-LMs, where the inputs to the network are
a mixture of words and morphemes along with their features.
Significant Word Error Rate (WER) reductions are achieved
compared to the traditional word-based LMs.

Index Terms— language model, morpheme, feature-rich,
deep neural network, Egyptian Arabic

1. INTRODUCTION
Egyptian Arabic (EA) is the local colloquial version of Mod-
ern Standard Arabic (MSA) spoken in Egypt. It is in fact
a low-resource language for which there is no widely avail-
able language resources such as written text, pronunciation
dictionaries, morphological analyzers, and so forth. More-
over, it is considered one of the morphologically complex lan-
guages due to its high degree of inflection and derivation that
leads to a very large number of different surface forms de-
rived from the same root. For these reasons, EA is considered
as a real challenge for LVCSR systems. Normally, a conven-
tional word-based LVCSR system suffers from high Out-of-
vocabulary (OOV) rates and poor LM probability estimates.

An alternative approach to deal with EA is the use of
morpheme-based LMs in order to reduce data sparsity, lower
the OOV rate and perplexity (PPL), and thereby achieve lower
WERs. Morphemes are generated by applying morphological
decomposition to words based on linguistic knowledge [1], or
based on unsupervised approaches [2]. For MSA, some of the
linguistic methods use the Buckwalter Arabic Morphological

Analyzer (BAMA) [3]. In fact, almost all the available mor-
phological analyzer tools are specifically designed for MSA.
However, one important property about EA is that it shares a
large portion of the written vocabulary with MSA. This makes
it possible to reuse the MSA morphological analyzers for EA
with some acceptable margin of error. In this work, we use
the Morphological Analyzer and Disambiguator for Arabic
(MADA) [4] as we previously investigated on MSA [5].

Another approach to efficiently exploit sparse training
data and reduce the dependence on the discourse domain is
to utilize information from additional word features such as
morphological tags. Thus, to assign proper features to words
and incorporate them in the probability estimation process.
This usually yields better smoothing and, hopefully, better
generalization to unseen word sequences. The features can be
generated based on linguistic methods [6], or via data driven
approaches [7]. In this paper, we derived morphological
features from MADA.

One of the major disadvantages of the backoff n-gram
LM is its poor performance in cases of data sparseness even
when efficient smoothing techniques are used like the Modi-
fied Kneser-Ney Smoothing [8]. In contrast, Neural Network
LMs (NN-LMs) estimate probabilities in a continuous space
using single hidden layer (shallow) networks [9, 10]. This
NN-LMs have a built-in smoothing capability that helps to
achieve better generalization. Recently, Deep Neural Net-
works (DNNs) with multiple hidden layers have shown the
capability to capture higher-level abstract information that are
more discriminative to the input features. They have been
shown to provide improved performance compared to shal-
low networks in different tasks [11, 12, 13].

In this work, we explore the use of word-based DNN-
LMs. In addition, we use DNNs to estimate morpheme-based
LMs having a mixture of words and morphemes as inputs.
Moreover, we add word and morpheme features to the DNN
inputs. This is a novel approach in which we combine the ad-
vantages of using morpheme-based LMs, feature-rich model-
ing along with the modeling capabilities of DNNs. A related
work in [14] explores the use of feature-rich word-based shal-
low NN-LMs with a focus on PPL improvement only.
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2. METHODOLOGY
2.1. Word decomposition
Our LM training data is processed using MADA 2.0 tool.
MADA is a morphological analyzer and disambiguator tool
designed for MSA and built on top of BAMA [4]. It is able
to associate a complete set of morphological tags with each
word in context. These tags are used to generate robust word
diacritization and tokenization. For non-MSA words, MADA
produces special unknown markers to indicate the inability
to analyze the word. To get an idea of how MADA behaves
differently with EA than MSA, we performed some measure-
ments on the unknown word rate. For a typical MSA text, the
unknown word rate is around 1-3%. However, for some EA
text, the unknown word rate is around 10-12%. In addition,
MADA produces some additional errors in the known MSA
words that are used in EA in a different sense. Given that
MADA achieves an accuracy of around 98% for MSA [4],
then this means that we can process EA text using MADA
with an accuracy of around 80-85%. Based on MADA to-
kenization, we produce decomposed words in the form of “
prefix+ stem +suffix”. The ‘+’ sign is used as a marker for
full-word recombination. In our previous work in [5, 15], we
have found that it is useful to keep in the recognition vocab-
ulary some number of the high frequent full-words without
decomposition. This results in hybrid LMs containing words
and morphemes in one flat model. For the details of the de-
composition process and constraints, see [5].
2.2. Feature derivation

Starting from the MADA morphological tags along with the
generated decomposition, we derive two different features,
namely “Lexeme” and “Morph”. Lexeme is an abstraction
over the inflected words that groups together all word forms
that differ only in one of the morphological categories such as
number or gender. Morph is the morphological description of
the word; it includes the word Part-of-speech (POS) and indi-
cates whether a conjunction, particle, article or a clitic are ag-
glutinated to the word. The LM training corpus is re-written
so that every word is replaced by a vector of features as in
the form: {W-<word>:L-<lexeme>:M-<morph>}. The
same features are similarly defined for morphemes as well as
for words. A vector example using Buckwalter translitera-
tion in the case of words is: wAl$rqyp → {W-wAl$rqyp:M-
conj+art+AJ-FEM-SG:L-$rqy}. However, in the case of
morphemes: wAl$rqyp → {W-wAl+:M-conj+art:L-wAl+}
{W-$rqyp:M-AJ-FEM-SG:L-$rqy}. Hence, we see that a
careful handling of word morphological features could help
to produce valid features for morphemes.

2.3. Neural network language models (NN-LMs)

The backoff n-gram LMs perform poorly in cases of data
sparseness. Even when large training corpora are used, still
extremely small probabilities are assigned to many valid word
sequences. The discrete nature of the n-gram LMs makes it

difficult to reach high levels of generalization even when ef-
ficient smoothing techniques are used [8]. The main issue
is the lack of a notion of word similarity. In fact, the use
of word features introduces a partial solution to this problem
by supporting words with features in cases of sparseness. In
contrast, a NN-LM [10] uses a feed-forward NN that maps
words into a continuous representation space and predicts the
probability of a word given the continuous representations of
the preceding words in the history. The projection of words
into continuous space is done jointly with the NN training in
a single process. This ensures the learning of the most suit-
able projection matrix that best fits the probability estimation
task. Thereby, words that are semantically or grammatically
related are hopefully mapped to similar locations in the con-
tinuous space. Thus, the similarity is defined as being close
in the multi-dimensional feature space. The probability esti-
mates are smooth functions of the continuous word represen-
tations, a small change in the input features leads to a small
change in the probability estimation. This gives the model a
built-in smoothing capability that enables it to achieve better
generalization. The NN-LMs have been shown to yield better
PPLs and WERs compared to conventional n-gram LMs [16].
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Fig. 1. The architecture of the NN-LM.

Figure 1 shows the architecture of a standard NN-LM. As-
suming that the vocabulary size is N , each vocabulary word
is represented by a binary N dimensional indication vector
having a value of one at the index of that word and zero
elsewhere. The input to the NN is the concatenated indica-
tion vectors of the n − 1 history words. A linear projection
layer is used to map each word to its continuous represen-
tation. This encoding simplifies the calculation of the projec-
tion layer since we only need to copy the ith row of the N×P
dimensional projection matrix. The projection matrix is tied
for all history words. The continuous feature vectors of the
history words are concatenated together to form the input of
the hidden layer. This hidden layer has H hidden units with
hyperbolic tangent activation function. This is followed by an
output layer with N target units that use the softmax function
to produce the posterior probabilities P (wj = i|hj). These
posteriors make up the LM probabilities of each word in the
vocabulary given a specific history hj .
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Let the linear activities of the projection layer be cl with
l = 1, ..., (n− 1)P , M = [mjl] is the weight matrix between
the projection and the hidden layer, V = [vij ] is the weight
matrix between the hidden and the output layer, bj and ki are
the biases of the hidden and the output layers respectively,
then the operations performed by the NN are:

dj = tanh

(n−1)P∑
l=1

mjlcl + bj

 ∀j = 1, ...,H (1)

oi =

H∑
j=1

vijdj + ki ∀i = 1, ..., N (2)

pi =
eoi∑N
r=1 e

or
= P (wj = i|hj) ∀i = 1, ..., N (3)

These operations are dominated by the H×N multiplications
at the output layer. Therefore, we use a shortlist of output
targets containing only the most frequent vocabulary words.
The network is trained using the standard Back-propagation
algorithm with the cross-entropy loss function.

2.4. Deep neural network language models (DNN-LMs)

A Deep Neural Network LM (DNN-LM) [17] is similar to
the one in Figure 1 but employs several hidden layers of non-
linearities. This deep architecture has been found to improve
the performance over the single hidden layer NN across dif-
ferent tasks [18]. The reason is that the upper layers of the
DNN represent more abstract concepts that explain the input
observation, whereas lower layers extract low-level features.
In [13], the DNN-LMs are investigated for the English Wall
Street Journal (WSJ) speech recognition task and was found
to improve both PPLs and WERs over the shallow NN-LMs.

2.5. Feature-rich deep neural network language models

To enhance the probability estimation of the DNN-LMs, we
add lexeme and morph features to the inputs of the DNN
(see Section 2.2). The vocabulary of lexemes and morphs
is concatenated to the main hybrid word/morpheme vocab-
ulary. Thereby, a unified binary indication vector can be
used to encode word, lexeme or morph inputs to the DNN.
For a given predicted word, the history words are expanded
by adding features. Then, all the words and features in the
history are encoded as binary indication vectors that are con-
catenated together and used as inputs to the DNN. Assuming
that w is the predicted word, h is the history words, h̄ is
the features of the history, then the feature-rich DNN-LM
is estimating the probability distribution P (w|h, h̄). For ex-
ample, in this paper, the estimated probability distribution
is P (wt|wt−1, lt−1,mt−1, wt−2, lt−2,mt−2) (3-gram like
model), where l is the lexeme and m is the morph.

There are two possible approaches to use the probabili-
ties of the feature-rich DNN-LM. The first is to perform N-
best rescoring for sentences expanded with features. In this

case, to combine the feature-rich DNN-LM with the standard
n-gram LM, we need to do N-best score combination. This
is because a direct interpolation of both models is not pos-
sible. The second approach is to perform lattice rescoring.
In this paper, we investigate only the second approach leav-
ing the first one as a future work. In order to perform lattice
rescoring, we need to estimate the probability P (w|h) from
the distribution P (w|h, h̄). This is done as follows:

P (w|h) =
∑
h̄

P (w, h̄|h) =
∑
h̄

P (w|h, h̄)P (h̄|h) (4)

The distribution P (w|h, h̄) is obtained from the DNN-LM
(
∑

w P (w|h, h̄) = 1). The probability P (h̄|h) is the prob-
ability of some features given history words. The summation
of Equation 4 is performed over all possible features h̄ that
occur for the words of h in the training data. For the unre-
lated features, the probabilities P (h̄|h) are considered zeros.
To estimate P (h̄|h), we could make the assumption that for
a certain h̄, P (h̄|h) is close to 1.0, whereas for other h̄, it is
close to 0.0. Under this assumption, a maximum approxima-
tion is used to estimate P (w|h) in Equation 5. Alternatively,
we can assume that P (h̄|h) is uniformly distributed such that
P (h̄|h) = 1/N(h̄), where N(h̄) is the total number of possi-
ble features h̄ of h. This leads to Equation 6.

P (w|h) = max
h̄

P (w|h, h̄) (5)

P (w|h) =
1

N(h̄)

∑
h̄

P (w|h, h̄) (6)

The empirical results have shown that the second approxima-
tion performs better in practice. In order to apply Equation
6, we extract all the n-grams of the required length from the
lattices and expand them by adding all possible features that
occur for each history in the training data. The probabilities
P (w|h, h̄) are extracted from the DNN-LM. Then, the aver-
aging of Equation 6 is performed. The features are then re-
moved to obtain word conditional probabilities that are used
to rescore the lattices. We can also interpolate these probabil-
ities with those obtained from the DNN-LM without features.

3. EXPERIMENTAL SETUP
Our LVCSR system is trained on the Egyptian CallHome
Arabic (ECA) corpus consisting of around 16h of transcribed
telephone conversational speech. The acoustic models (AMs)
are quint-phone across-word models trained with Maximum
Likelihood (ML) and Discriminative Training (DT) based
on boosted Maximum Mutual Information (bMMI). Our LM
training corpora have around 7 Million running words in-
cluding: acoustic transcriptions (140k words), web text (5M
words), extra sources (1.5M words). We build word-based
and morpheme-based systems. The first uses a 350k vocabu-
lary of full-words, whereas the second uses a 250k vocabulary
[5k full-words + 245k morphemes]. The number of full-
words is selected so as to minimize the WER over the devel-
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opment set. A grapheme-based lexicon is used with pronunci-
ations similar to word orthographies. The speech recognizer
works in 2 passes. The first pass uses feature space Maximum
Likelihood Linear Regression (fMLLR) adaptation. The sec-
ond pass uses MLLR adaptation. In each pass, a word- or
morpheme-based 3-gram LM smoothed using the modified
Kneser-Ney smoothing is used to construct the search space
and to produce lattices, these lattices are rescored using dif-
ferent NN-LMs1. All the LM training corpora are used to
estimate the 3-gram LMs using interpolation of the three
available text sources, whereas only the first two text sources
are used to train the NN-LMs. This is to speed-up the NN
training process since the remaining text source is found al-
most not influential to the final 3-gram LM PPL. We build a
separate 3-gram NN-LM for each text source. Then, we inter-
polate the two models together with the conventional 3-gram
LM. We follow the best reported settings of NN-LMs in [13].
Let d be the feature dimension at the projection layer, h is the
number of units for each hidden layer, l is the number of hid-
den layers, and v is the size of the output layer. Then, we use
[d = 120;h = 500; l = 1 to 4; v = 10k to 20k]. Recognition
performance is evaluated on ECA evaluation set [ECA-eval:
1.7h]. Parameter tuning is performed on [ECA-dev: 3.6h].

4. EXPERIMENTS
Table 1 shows the WERs and PPLs for word- and morpheme-
based systems using the baseline 3-gram LMs and different
NN-LMs interpolated with the 3-gram LMs. We can see the
significant improvement in WER (2.9% absolute) using the
morpheme-based LMs compared to the word-based LMs.
In addition, significant improvements are achieved in both
WERs and PPLs as a result of using NN-LMs. The largest
gain is acquired by the first hidden layer. Going to more deep
NN-LMs leads to little further improvements in WERs and
PPLs. The best performance of the word-based system oc-
curs with a 3-layer NN-LM. Whereas, the best performance
for the morpheme-based system occurs with a 2-layer NN-
LM. However, the PPL is almost not improved beyond the
2-layers. Using feature-rich NN-LMs, we achieve little more
improvements. The final best results are presented in Table 2,
where three morpheme-based LMs are interpolated together;
namely the conventional 3-gram LMs, the NN-LMs, and the
feature-rich NN-LMs. The final best WER is 55.8% achieved
using 2-layer NN-LMs. This is improved by 3.9% (abso-
lute) compared to the WER of the baseline word-based sys-
tem in Table 1. Compared to the baseline morpheme-based
system, we achieved 1.0% (absolute) improvement. These
WER improvements are considered statistically significant
(p-value ≤ 0.1) using the test proposed in [19].

5. CONCLUSIONS
We proposed a novel approach that combines the benefits of:
morpheme-based LMs, feature-rich modeling, along with the

1NN-LM is a generic name for neural network LMs with l hidden layers

Table 1. WERs [%] & PPLs over ECA-eval corpus for WB:
350k word-based system OOV = 1.2%, MB: 250k morpheme-
based system (5k full-words + 245k morphemes) OOV =
0.75%; using a conventional 3-gram LM, NN-LM, and fNN-
LM: feature-rich NN-LM.

WB MB
LM PPL WER PPL WER
3-gram 330 59.7 308 56.8
3-gram + NN-LM

1 layer 316 59.2 286 56.1
2 layers 315 59.4 285 56.0
3 layers 318 59.1 287 56.2
4 layers 319 59.2 288 56.0

3-gram + fNN-LM
1 layer 309 59.2 280 56.0
2 layers 306 59.1 281 56.0
3 layers 307 59.0 278 56.0
4 layers 308 59.1 282 56.1

Table 2. WERs [%] & PPLs over ECA-eval corpus for a
250k morpheme-based system (5k full-words + 245k mor-
phemes) using an interpolated LM: 3-gram + NN-LM + fNN-
LM; fNN-LM: feature-rich NN-LM.

# layers for
NN/fNN-LM PPL WER

1 layer 286 56.0
2 layers 285 55.8
3 layers 285 56.0
4 layers 287 55.9

recently explored DNN-LMs to perform LVCSR for Egyptian
Arabic. Most of the obtained WER improvement is achieved
by using morpheme-based LMs. The second most influen-
tial approach is the use of DNN-LMs. Therein, the largest
improvement is obtained by the first hidden layer, whereas
little additional improvement is acquired by the deeper DNN-
LMs. Moreover, the use of morphological features in feature-
rich DNN-LMs introduces little further improvements. The
morpheme-based modeling increases the lexical coverage and
reduces the data sparseness. The feature-rich modeling pro-
motes the generalization capability of the LMs. Whereas, the
use of DNN-LMs allows for efficient smoothing and higher
discrimination capabilities. The best performance is achieved
by interpolating the following models: the conventional n-
gram LM, the DNN-LM, and the feature-rich DNN-LM.
As a future work, we explore the effect of the following on
the DNN-LMs: pretraining strategies, increasing the context
length, N-best rescoring, optimization of layer sizes.
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