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ABSTRACT
Recurrent neural network language modeling (RNNLM) have been
shown to outperform most other advanced language modeling tech-
niques, however, it suffers from high computational complexity. In
this paper, we present techniques for building faster and more accu-
rate RNNLMs. In particular, we show that Brown clustering of the
vocabulary is much more effective than other techniques. We also
present an algorithm for converting an ensemble of RNNLMs into
a single model that can be further tuned or adapted. The resulting
models have significantly lower perplexity than single models with
the same number of parameters. An error rate reduction of 5.9%
was observed on a state of the art multi-pass voice-mail to text ASR
system using RNNLMs trained with the proposed algorithm.

Index Terms— Language Modeling, Automatic Speech Recog-
nition, Recurrent Neural Network Language Model, Multiple Paral-
lel Hidden Layers

1. INTRODUCTION

In the last few years, exponential language models such as Max-
Ent [1, 2], neural network language models (NNLM) [3, 4], and re-
current neural network language models [5] have proven to be better
than traditional n-gram language models, in terms of both perplexity
and word accuracy for automatic speech recognition (ASR).

RNNLMs are particularly promising. In a recent study [6] com-
paring many advanced language modeling techniques, ensembles of
RNNLMs were shown to outperform, on their own, all other tech-
niques. Furthermore, they seem to be complementary to n-gram
models. One of the main disadvantages of RNNLM is their high
computational complexity, both for testing and training. For train-
ing, mini-batch techniques used for parallelizing other neural net-
works, are not as effective due to the recurrent connections and the
back propagation through time (BPTT) training algorithm. In this
paper, we propose techniques for building more accurate and faster
RNNLM.

A RNNLM is a neural network with the architecture shown in
figure 1. It’s input consists of the previous word W (t − 1) repre-
sented as a vector using 1 of N encoding, and S(t − 1), the activa-
tion of the hidden layer in the previous time step. Its output O(t) is
a vector containing the probability P (wt|h) of each word wt in the
vocabulary given the history h, or prefix, of the sentence up to t. The
values in layers S(t), Y (t) and O(t) are computed as:

sj(t) = f(
∑
i

wi(t− 1)uji +
∑
i

si(t− 1)rji) (1)

f(z) =
1

1 + e−z
(2)

yk(t) =
∑
j

sj(t)vkj (3)

om(t) =
eym(t)∑
k e

yk(t)
(4)

The network is trained using backpropagation through time.RNNLM 
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Fig. 1. Recurrent Neural Network Language Model Architecture.

In the next section we describe the corpora used to evaluate our
work. In section 3 we show that class decomposition can be im-
proved using Brown clustering. The following section presents a
technique for building a large RNNLM from an ensemble of smaller
RNNLMs. This technique enables faster and parallel training of
large RNNLMs. Section 5 describes ASR experiments. It is fol-
lowed by a description of related work, and the conclusions.

2. CORPORA

To enable a comparison of our results with those of other researchers,
we conducted most experiments on the WSJ subset of the Penn Tree
Bank corpus. Following established practice, we used sections 0-20
for model training (930k words), sections 21-22 for tuning and vali-
dation (74k words) and sections 23-24 for testing (82k words). The
tokenization and the vocabulary (10k different words) is the same
as used by other researchers, such as[7]. All results presented were
obtained on the test set.

We used an internal AT&T voice mail to text system (VMTT)
To experiment with the impact of RNNLM techniques on automatic
speech recognition. The data used to build the system consists of 2
sets. The first one, UM contains transcribed voice mails from an in-
ternal AT&T system (2.4M tokens and a vocabulary of 28k words).
The second one, MW is a larger set of poorly transcribed voice mails
from a different application and population of users. This collection
contains 49M tokens and has a vocabulary of 126k words. 10% of
the UM data was set aside to fine tune the models and meta param-
eters. For evaluation, we used an independent set of 179 UM voice
mails. All transcriptions were anonymized.
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h classes speed Avg PPL Min PPL
50 200 Freq 26938 156.34 155.19

100 200 Freq 12740 142.93 142.11
200 200 Freq 5178 136.12 135.32
300 200 Freq 2866 135.14 133.99

50 200 Brown 25599 145.33 142.62
100 200 Brown 12087 132.60 131.58
200 200 Brown 4966 127.09 126.23
300 200 Brown 2785 125.06 124.21

50 none 720 145.37 142.79
100 none 355 132.95 131.37
200 none 186 126.55 125.51
300 none 131 125.12 123.46

Table 1. Speed and perplexity on Penn corpus for networks with var-
ious hidden layer sizes h using different class decomposition meth-
ods.

h classes speed Avg PPL Min PPL
200 50 Freq 4904 137.35 135.58
200 100 Freq 5620 136.54 135.60
200 200 Freq 5178 136.12 135.32
200 400 Freq 3822 135.96 134.65
200 50 Brown 3402 129.21 128.26
200 100 Brown 4846 128.10 126.69
200 200 Brown 4966 127.09 126.23
200 400 Brown 3786 126.31 125.32
200 none 186 126.55 125.51

Table 2. Speed and perplexity on Penn corpus for various number
of classes using different class decomposition methods.

3. OUTPUT LAYER DECOMPOSITION

The computational complexity of RNNLM is very high both in train-
ing and testing. Given a vocabulary of size v and h hidden units, the
runtime complexity is dominated by O

(
h2 + hv

)
. The most impor-

tant factor is hv and occurs because the computation of the denom-
inator of o(t), e.g the partition function, requires summing over the
full vocabulary. A very effective technique to reduce this complexity
by a factor of up to

√
v consists of partitioning the vocabulary in

word classes, and decomposing P (w|h) ≈ P (cw|h)P (w|cw, h).
The sub-models P (cw|h) and P (w|cw, h) are also exponential
models, however the partition functions of each sub-model is much
cheaper to compute. This technique has been used, for example, by
[1, 8, 7, 9, 2]. In the context of RNNLMs, most published results
use a simple frequency binning word to class assignment [7]: words
are ranked by their frequency, then, following the rank, they are
assigned to each class so that the frequency of each class is close to
uniform. This technique is attractive because it is linear in the size
of the corpus, and it creates balanced classes, however, it does not
take into account any measure of modeling accuracy.

We compare the speed and accuracy of this technique with
Brown clustering [10]. This is a computationally much more expen-
sive algorithm, and can result in unbalanced classes, which cause
slower RNNLMs for the same number of parameters. Since it clus-
ters words that share similar bigram contexts, we expect it to result
in lower perplexity than frequency mining. Tables 1 and 2 show
the speed and perplexity obtained with both methods on a variety
of configurations. Running speed is presented as words/second
computed on a 2.4Ghz Intel Core 2 linux desktop. We show both

the minimum and the average perplexity of 9 randomly initialized
models. From these results, it is clear that Brown clustering closely
approximates the perplexity obtained not using class decomposition
at a speed comparable to frequency binning.
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Fig. 2. MPHL combining 2 RNNLMs.

4. MULTIPLE PARALLEL HIDDEN LAYERS

It has been shown that the linear interpolation of many RNNLMs
greatly reduces perplexity [7, 6]. These RNNLMs can be trained
separately and should be diverse. Diversity can be achieved in a
number of ways, for example: using different random initializations,
different configurations, different permutations of the training data,
and/or different training data subsets. While effective, an ensemble
of models allows limited tuning options beyond interpolation weight
optimization [11].

Both the linear and the geometric average (or log linear interpo-
lation) model combination methods are well justified. They compute
the model with the minimum average Kullback-Leibler divergence
to all models in the ensemble [12]. The linear or the geometric av-
eraged models are obtained depending on which model is taken as
the prior or the posterior in the asymmetric Kullback-Leibler diver-
gence.

Let’s consider the weighted geometric average of two models:

P12(w|h) =
P1(w|h)αP2(w|h)1−α∑
v P1(v|h)αP2(v|h)1−α

(5)

Replacing P by the definition of exponential model (equation 4), and
canceling the normalization terms:

P12(w|h) =
(ey1(w,h))α(ey2(w,h))1−α∑
v (e

y1(v,h))α(ey2(v,h))1−α
(6)

Finally:

P12(w|h) =
ey1(w,h)α+y2(w,h)(1−α)∑
v e

y1(v,h)α+y2(v,h)(1−α)
(7)

Thus the geometric average of exponential models is equivalent
to the linear average of the weights to the final layer. This result ap-
plies to all exponential models including maximum entropy, deep-
networks, NNLM, LSTM-LM and RNNLM, and gives us a princi-
pled way to merge models trained separately. Furthermore, it al-
lows the combination and joint training of different techniques. The
ME-RNNLM technique of [11] can be seen as the geometric inter-
polation and tuning of an RNNLM and a maximum entropy model.
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The combination of multiple RNNLM in a single RNNLM, in par-
ticular, is illustrated in Figure 2 for 2 models. Matrices U1 and U2

are concatenated. Matrices V1 and V2 are linearly scaled by α or
(1−α), and then concatenated. Finally R1 and R2 are combined in
a (h1 +h2)x(h1 +h2) block diagonal matrix. The weights between
hidden layer nodes from different sub-models are set to zero. This
means that there are fewer independent parameters than in a single
large model trained from scratch. An alternative implementation of
the combination consists of keeping the hidden layers separate and
averaging the last layer before computing the softmax. This was our
chosen implementation because it allows for a trivial parallel imple-
mentation. We call the result of this model combination technique
multiple parallel hidden layers (MPHL) language models. The algo-
rithm consists of the following steps:

1. Train a diverse set of exponential language models

2. Rank models using the following greedy algorithm that iter-
atively removes the worst (most redundant) model from a set
of models:

(a) Start with the set S of all models

(b) For each subsetR of S such that |R| = |S|−1, evaluate
the best possible perplexity of the linear interpolation of
its component models on a development data set

(c) Select the subset R∗ with lowest perplexity

(d) S ← R∗

(e) if |S| > 1 go to (2.b)

3. Combine the best k models in a single model implementing
geometric interpolation

4. Fine tune by continuing training of the combined model. Op-
tionally retrain only the interpolation weights, or only V (both
efficient convex optimization problems)

We use linear interpolation as a proxy for geometric interpo-
lation in step 2.b, because linear interpolation weights can be opti-
mized very efficiently. If desired, we optimize the geometric interpo-
lation weights by averaged stochastic gradient descent (ASGD) [13]
once the full network is assembled. Step 3 assumes that all mod-
els use the same word class decomposition. When that is not the
case, we clear the weights V and retrain it. At first glance, step 4
seems computationally expensive, but training can be parallelized
and ASGD converges in very few iterations.

Table 4 compares MPHL with geometric and linear interpolation
of different models. Only the last layer of the MPHL network was
retrained. MPHL achieves the best perplexity, while the perplexity of
the interpolated models is comparable, with geometric interpolation
being slightly better that linear interpolation.

Comparing MPHL models and RNNLMs with the same num-
ber of hidden units. We observe that MPHL models have signif-
icantly better perplexity than single RNNLMs. Furthermore, esti-
mation is faster if we train the sub models in parallel. Comparing
MPHL with difference configurations we see that combining fewer
but larger models is preferable to combining many smaller ones. The
reason is most likely the fact that the later have fewer non-zero re-
current connections.

5. ASR RESULTS

The VMTT speech recognition system used for the Speech Recogni-
tion Experiments is a state of the art multi-pass system [14]. Speech

h MPHL Linear Log Lin
50 155.19 155.19 155.19

2x50 140.86 143.06 142.41
4x50 132.35 137.19 136.46
8x50 126.87 134.85 134.27

100 142.11 142.11 142.11
2x100 127.78 129.12 128.55
4x100 121.69 123.17 122.59
8x100 117.62 120.96 120.51

200 135.32 135.32 135.32
2x200 120.16 121.73 121.04
4x200 114.21 115.34 114.77
8x200 112.16 113.06 112.68

Table 3. Perplexity of MPHL, Linear and Log linear interpolation of
multiple models on the Penn corpus. All models use 200 frequency
classes.

h MPHL Linear Log Lin
50 142.62 142.62 142.62

2x50 129.95 131.75 131.11
4x50 122.73 126.97 126.23
8x50 117.55 125.27 124.76

100 131.58 131.58 131.58
2x100 118.81 119.84 119.23
4x100 112.77 114.47 113.88
8x100 108.55 112.71 112.35

200 126.23 126.23 126.23
2x200 112.58 113.81 113.34
4x200 106.99 107.93 107.51
8x200 105.48 106.05 106.05

Table 4. Perplexity of MPHL, Linear and Log linear interpolation
of multiple models on the Penn corpus. All models use 200 Brown
classes.

recognition consists of a three-pass decoding approach utilizing
MPE-trained baseline, VTLN and CMA trained acoustic models.
The models used three-state left-to-right HMMs representing dif-
ferent phonemes for general English, spelled letters and digits.
The models had 8.5k states and 26.5k HMMs, trained on just over
5000 hour of poorly transcribed voice mail recordings.The context
dependency structure of the models was kept identical. The base-
line model was used to generate hypotheses. The hypotheses were
used to generate the VTLN warped features which were then used
with the VTLN-trained model to generate the improved hypothe-
ses. CMA was applied to the warped features, and the adapted
features were recognized in the final pass with the model trained on
the CMA-adapted training features. All the passes used the same
language model, a linear interpolation of two Knesser-Ney 4-gram
language models trained on the UM and MW data sets respectively.
The language model contains 13.4M n-grams.

The recognition system was used to generate lists of 100-best
and 1000-best hypotheses for each utterance. Then each hypoth-
esis was rescored by replacing the baseline language model score
with the score computed by linearly interpolating the baseline n-
gram model with various RNNLM configurations. In particular, we
trained 8 RNNLMs with 300 units in the hidden layers on the UM
data, and 6 RNNLMs with 100 units in the hidden layer on the MW
data. These networks were then combined using either linear in-
terpolation or MPHL. In all cases the vocabulary was decomposed
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System Word ACC % of oracle
Baseline 4-gram 78.06 0
Oracle 100 best 80.40 100

8x UM + 6x MW RNNLM linear 79.06 43
8x UM + 6x MW MPHL 79.07 43
Oracle 1000 best 81.28 100

8x UM + 6x MW RNNLM linear 79.23 36
8x UM + 6x MW MPHL 79.36 40

Table 5. Word accuracy of RNN and MPHL LMs in the Voice Mail
Task.

in 200 Brown classes. The results are shown in table 5. The table
shows the oracle accuracy for each list, we can see that it is only
at most 3.2% better than the baseline system. The main reason for
this is that these utterances are long, with 120 words on average, thus
there is little variety in the list. Even with this constraint, the MPHLs
are able to recover 1.3% absolute accuracy, reducing the error rate
by 5.9%. MPHL model combination is better than linear interpola-
tion. We also show the percentage of the oracle accuracy that we
are able to recover from the n-best list. This percentage is defined
as 100x(accuracy− baseline)/(oracle− baseline). The fact that
we are able to recover around 40% of the accuracy in a 1000-best
list indicates that both MPHL LMs and RNNLMs are constrained
by the baseline hypotheses. An alternative rescoring technique, such
as proposed by [15], may be able to achieve much better results.

6. RELATED WORK

The vocabulary clustering using Brown classes has been widely
used in language modeling, for example, is has been used with
n-gram models [10], and in both NNLMs [16] and MaxEnt mod-
els [1, 2]. Log Linear interpolation has also been used by many
researchers [17]. Combining linear exponential models trained
on different data sets by linearly averaging their parameters is a
common technique for distributed training of MaxEnt models [18],
however we are not aware of any previous work that uses it to build
a single non-linear language model.

7. CONCLUSIONS

We have shown that the word clustering algorithm used to decom-
pose the output layer of a RNNLM is critical, and that using algo-
rithms such as Brown clustering that take into account the context
of words leads to substantial reductions in perplexity relative to sim-
pler word frequency binning approaches. We have also presented the
relation between the ensemble combination technique of geometric
averaging and the structure of exponential models. This enables us
to combine separately trained models in a single model that can be
further tuned. The combined model has substantially lower perplex-
ity than a single model with the same number of parameter trained
from scratch using BPTT. When evaluated on a state of the art ASR
system, this technique proved to be superior to linear interpolation,
and achieved a 5.9% error rate reduction relative to the n-gram base-
line.
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