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ABSTRACT

In natural languages multiple word sequences can represent the same
underlying meaning. Only modelling the observed surface word se-
quence can result in poor context coverage, for example, when us-
ing n-gram language models (LM). To handle this issue, paraphras-
tic LMs were proposed in previous research and successfully ap-
plied to a US English conversational telephone speech transcription
task. In order to exploit the complementary characteristics of para-
phrastic LMs and neural network LMs (NNLM), the combination
between the two is investigated in this paper. To investigate para-
phrastic LMs’ generalization ability to other languages, experiments
are conducted on a Mandarin Chinese broadcast speech transcrip-
tion task. Using a paraphrastic multi-level LM modelling both word
and phrase sequences, significant error rate reductions of 0.9% ab-
solute (9% relative) and 0.5% absolute (5% relative) were obtained
over the baseline n-gram and NNLM systems respectively, after a
combination with word and phrase level NNLMs.

Index Terms: language model, paraphrase, speech recognition

1. INTRODUCTION

Natural languages have layered structures, a deeper structure that
represents the meaning and core semantic relations of a sentence,
and a surface form found in normal written texts or speech. The
mapping from the meaning to surface form involves a natural lan-
guage generation process and is often one-to-many. Multiple surface
word sequences can be used to convey identical or similar semantic
information. They are paraphrastic to each other, but use different
syntactic, lexical and morphological rules in generation. Only mod-
elling the observed surface word sequence can result in poor context
coverage, for example, when using n-gram language models (LM).
To handle this problem, it is possible to directly model para-
phrase variants when constructing the LM. Since alternative expres-
sions of the same meaning are considered, the resulting LM’s con-
text coverage and generalization performance is expected to be im-
proved. Along this line, the use of word level synonym features [8,
10, 7, 3] has been investigated. However, there are two issues as-
sociated with these existing approaches. First, the paraphrastic rela-
tionship between longer span syntactic structures, such as phrases, is
largely ignored. Hence, a more general form of modelling that can
also capture a higher level paraphrase mapping is preferred. Second,
previous research focused on using manually derived expert seman-
tic labelling provided by resources such as WordNet [5]. As manual
annotation is usually very expensive, the scope of applying these
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methods to large tasks or rare resource languages is limited. Auto-
matic, statistical paraphrase induction and extraction techniques are
thus required. In order to address these issues, a novel form of lan-
guage model, the paraphrastic LM, was proposed in [15], and suc-
cessfully applied to a state-of-the-art LVCSR task for US English
conversational telephone speech.

Both paraphrastic LMs and neural network LMs [23] can be
used to improve LM generalization. However, there are major dif-
ferences between them that can also be exploited as complemen-
tary characteristics. First, paraphrastic LMs can be trained using a
large amounts of training data. In contrast, to reduce computational
cost, NNLMs are normally trained using only a small in-domain data
set, for example, audio transcripts. Secondly, paraphrastic LMs re-
distribute sufficient statistics to variable length paraphrase variants
of the same sentence. The resulting sequence level smoothing of LM
probabilities is different from the n-gram level smoothing used by
NNLMs. Finally, the paraphrastic LMs considered in this paper are
based on n-gram models. Despite being more efficient than NNLMs
in probability computation, their generalization ability remain lim-
ited for unseen contexts that can not be found in either the training
data or the associated paraphrases. A back-off to lower order distri-
butions is still required. Techniques that can represent n-gram prob-
abilities in a continuous space, such as NNLMs, can alleviate this
problem [23, 20]. Hence, in order to to leverage the strengths of both
models, the combination between paraphrastic LMs and NNLMs is
investigated in this paper. In order to further investigate paraphrastic
LMs’ generalization ability to other languages, experiments are con-
ducted on a Mandarin Chinese broadcast speech transcription task.

The rest of the paper is organized as follows. Paraphrastic LMs
are introduced in section 2. The paraphrase extraction and lattice
generation schemes are reviewed in section 3. The combination be-
tween paraphrastic LMs and neural network LMs is proposed in sec-
tion 4. In section 5 a range of paraphrastic LMs and their com-
bination with NNLMs are evaluated on a state-of-the-art Mandarin
Chinese broadcast speech transcription task. The main contributions
of this paper, relationship to previous work in the field and possible
future work are summarized in section 6.

2. PARAPHRASTIC LANGUAGE MODELS

As discussed in section 1, in order to capture the paraphrastic re-
lationship between longer span syntactic structures, a more general
form of modelling should be used. To address this issue, the particu-
lar type of LMs proposed in this paper can flexibly model paraphrase
mapping at the word, phrase and sentence level. As LM probabilities
are estimated in the paraphrased domain, they are referred to as para-
phrastic language models (PLM) [15]. For a L word long sentence
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W =< wi,wa, ..., W, ...,wr, > in the training data, the marginal
probability over all paraphrase variant sequences is maximized,

FOV)=In| > PP )P W) Pem(WV')

PP w
where

e Ppm(W') is paraphrastic LM probability to be estimated.

e P(1'|W') is a word to phrase segmentation model assigning
the probability of a phrase level segmentation, 1’, given a
paraphrase word sequence W';

e P(1|1p’) is a phrase to phrase paraphrase model computing
the probability of a phrase sequence ) being paraphrastic to
another 1)’;

e P(W]1) is a phrase to word segmentation model that con-
verts a phrase sequence 1 to a word sequence WV, and by
definition is a deterministic, one-to-one mapping, thus con-
sidered non-informative.

It can be shown that the sufficient statistics for a maximum like-
lihood (ML) estimation of Ppm(WV') are accumulated along each
paraphrase word sequence and weighted by its posterior probability.
For a particular n-gram predicting word w; following history h;, the
associated statistics C'(h;, w;) are

Clhi,wi) = Y PW'|W)Cyyr (hi, w;) 2)

w’

where Cyyr (hi,w;) is the count of subsequence <h;,w;> occur-
ring in paraphrase variant YW'. During word to phrase segmenta-
tion, ambiguity can occur. If there is no clear reason to favor one
phrase segmentation over another, P(t'|WV") may be treated as non-
informative, as is considered in this work.

As sufficient statistics are discounted and re-distributed to al-
ternative expressions of the same word sequence, paraphrastic LMs
are expected to have a richer context coverage and broader distribu-
tion, but at the same time potentially increased modelling confusion
than conventional LMs trained on the surface word sequence. One
approach to balance the specific, but lower coverage word-based N-
gram LMs with a more generic LM is to linearly interpolate the LM
probabilities. This is commonly used with class-based LMs [18] and
is used in this paper with paraphrastic LMs. Let P(w|h) denote the
interpolated LM probability for any in-vocabulary word w following
an arbitrary history h, this is given by

P(’Lb‘il) = ANGPNG(QMB) + Apm Prim (’lI}VNL) 3)

where Ang and Appm are the interpolation weights assigned to
the conventional LM distribution Pyg(-) and the paraphrastic LM
Peim(+). They can be optimized on some held-out data.

In order to increase the context span for paraphrastic LMs, a
phrase level paraphrastic LM can also be trained. This can be ob-
tained by optimizing a simplified form of the criterion in equation
(1), by dropping the word to phrase segmentation model P (1)’ |W’),

FOW)=In| > POWV[$)P(p|e") Porm(y) @)

by

thus the sufficient statistics in equation (2) accumulated on phrase
level instead. In order to incorporate richer linguistic constraints, it
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is possible to train and log-linearly combine LMs that model differ-
ent units, for example, words and phrases. LMs built at word and
phrase level are log-linearly combined to yield a multi-level LM to
further improve discrimination [12, 14]. This requires word level lat-

(1)tices to be first converted to phrase level lattices before the log-linear

combination is performed. The log-linear interpolation weights were
set equal for word and phrase level LMs, and kept fixed for all ex-
periments of this paper.

3. PARAPHRASE PHRASE PAIR EXTRACTION AND
PARAPHRASE LATTICE GENERATION

As discussed in sections 1 and 2, a phrase level paraphrase model
is used in paraphrastic LMs. In order to obtain sufficient phrase
coverage, an appropriate technique to learn a large number of para-
phrase phrase pairs is required. Since it is impractical to obtain ex-
pert semantic labelling at the phrase, or sentence level as for SMT
tasks [22], statistical paraphrase extraction schemes are needed [1,
16]. Techniques that perform paraphrase pair extraction from stan-
dard text data [11, 21] can be used. These are motivated by the dis-
tributional similarity theory [6], which postulates that phrase pairs
often sharing the same left and right contexts are likely to be para-
phrases to each other. As standard text data in large amounts can
be used, wide phrase coverage can be obtained. Due to this advan-
tage, the m-gram paraphrase induction algorithm presented in [15]
is used to estimate the paraphrase model. The same minimum and
maximum phrase length and the left and right context length settings
were also used for all experiments in this paper. This algorithm can
be extended to incorporate additional useful information, for exam-
ple, syntactic constraints. In common with other paraphrase induc-
tion methods, the above scheme can also produce phrase pairs that
are non-paraphrastic, for example, antonyms. However, this is of
less concern for language modelling, for which improving context
coverage is the prime aim.

In order to train paraphrastic LMs, multiple paraphrase variants
are required to compute the sufficient statistics given in equation (2),
as discussed in section 2. As all four components of the paraphrastic
LM given in equation (1) can be efficiently represented by weighted
finite state transducers (WFST) [17], rather than designing special
purpose decoding tools, the WEST based decoding approach pro-
posed in [15] was used in paraphrase lattice generation. The statis-
tics required for paraphrastic LM estimation are then accumulated
from the paraphrase lattices via a forward-backward pass. Using the
WEST based decoding approach and a paraphrase model trained on
545 million words of English conversational data, for an example
sentence some paraphrase variants generated are shown below.

Original Sentence:

AND I GENERALLY PREFER
Paraphrases:
AND I REALLY LIKE
IMEAN 1 WOULD LIKE
IGUESS I  GENERALLY LIKE
YOUKNOW I  JUST WANT
SO 1 APPRECIATE
ITHINK I NEED
‘CAUSE 1 LOVE
WELL 1 PREFER
UM I WISH
Antonyms:
AND YOU KNOW 1 HATE




As the paraphrase extraction method can also produce phrase
pairs that are non-paraphrastic, antonym word sequences such as
“AND YOU KNOW I HATE” were also found in the paraphrase
lattice, as is shown in the bottom of the table.

In order to improve phrase coverage, expert semantic labelling
provided by resources such as WordNet [5], and HowNet [4] for
the Chinese language, when available, can also be used to generate
paraphrases. As these paraphrase phrase pairs are not statistically de-
rived, the resulting paraphrase model are treated as non-informative.
Due to their different nature, statistically learned and expert derived
paraphrase pairs were used to generate separate sets of lattices, and
paraphrastic LMs. These models are then used in the interpolation
with standard LMs in equation (3), as considered in this work.

4. COMBINING PARAPHRASTIC LANGUAGE MODELS
WITH NEURAL NETWORK LANGUAGE MODELS

As discussed in section 1, paraphrastic LMs differ significantly from
neural network LMs [23] in terms of the training data used, model
structure and probability estimation. These differences can also be
exploited as complementary characteristics. Hence, it is possible to
appropriately combine paraphrastic LMs with NNLMs to leverage
the strengths of both models. The particular form of combination
considered in this paper is a linear interpolation between the para-
phrastic LM, the NNLM and the conventional n-gram LM. The in-
terpolated LM probabilities given in equation (3) is modified as,

P(ﬂ?\il) = )\NGPNG(@VL)-H\PLMPPLM(ID|/~1)+)\NNPNN(ITJ|B) ©)

where Ay is the interpolation weight assigned to the neural network
LM. In the same fashion as in equation (3), component LM interpo-
lation weights can be optimized on held-out data.

For the multi-level paraphrastic LMs discussed in section 2,
the above interpolation needs to be performed at both word and
phrase level prior to the log-linear combination between the word
and phrase level LMs. In addition to a word level neural network
LM, a neural network LM constructed using phrase level segmented
training data is also required.

To reduce computational cost, conventional NNLMs only model
the probabilities of a more frequently occurring subset of the com-
plete vocabulary, commonly referred to as the shortlist [23]. The
output layer normally only contains nodes for in-shortlist words. A
similar approach may also be used at the input layer. Two issues arise
when using this conventional NNLM architecture. First, NNLM pa-
rameters are trained only using the statistics of in-shortlist words
thus introduces an undue bias to them. Secondly, as there is no ex-
plicit modelling of probabilities of out-of-shortlist (OOS) words in
the output layer, statistics associated with them are also discarded in
NNLM training. To handle these issues, an NNLM architecture with
an additional output node explicitly modelling the probability mass
of OOS words [19] is used in this paper. This ensures that all training
data are used in NNLM training, and the probabilities of in-shortlist
words are smoothed by the OOS probability mass, thus obtaining a
more robust parameter estimation.

5. EXPERIMENTS AND RESULTS

In this section performance of various paraphrastic language models
are evaluated on the CU-HTK LVCSR system for Mandarin Chi-
nese broadcast speech used in the 2011 DARPA GALE evaluation.
The system was trained on 1960 hours of broadcast speech data re-
leased by the LDC. A 63k recognition word list was used in de-
coding. The system uses a multi-pass recognition framework. In the
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initial lattice generation stage, adapted gender dependent cross-word
triphone MPE acoustic models with HLDA projected PLP features
augmented with pitch features, and an interpolated 3-gram word
level baseline LM were used. A detailed description of the baseline
system can be found in [13]. A 3 hour GALE Chinese speech test set,
dev09s, of mixed broadcast news (BN) and conversation (BC) gen-
res was used. For all results presented in this paper, matched pairs
sentence-segment word error (MAPSSWE) based statistical signifi-
cance test was performed at a significance level a = 0.05.

The baseline LM was trained using a total of 5.9 billion char-
acters from 28 difference text sources. These account for 4 billion
words after a longest first based character to word segmentation was
applied. The four text sources with the highest interpolation weights,
the GALE acoustic transcriptions, BN (0.13) and BC (0.31), of 20
million words in total, the LDC GigaWord Xinhua News data, Gi-
gaXin (0.16), of 680 million words, and the Gale web data GaleWeb
of 800 million words (0.09), were used to build various language
models. These LMs are then evaluated to measure the character error
rate (CER) via lattice rescoring. The 4 billion word full set trained 4-
gram LM gave an error rate of 10.3% on dev09s, while a comparable
4-gram LM trained using only the above four text sources produced
a competitive CER score of 10.4% and was used as a baseline in the
following experiments, as is shown in the 1st line of table 2. Using
this baseline system the BN and BC genre specific performance on
d09s are 5.4% and 15.2% respectively.

Information on corpus size, paraphrase extraction schemes used
and the number of phrase pairs extracted from the these four text
sources, as well as HowNet [4], an expert semantic database for
the Chinese language, are given in table 1. Using the automatic n-
gram paraphrase extraction scheme discussed in section 3, a total of
80k, 35.9M and 1.8M phrase pairs were extracted from the BN+BC,
GigaXin and GaleWeb data respectively. The expert semantic la-
belling by HowNet gave a total of 3.7M paraphrase phrase pairs.

[ Source [[ Size [ Extraction [ # Phrase Pairs |
HowNet - Expert 3. M
BN+BC 20M Automatic 80k
GigaXin 680M | Automatic | 35.9M
GaleWeb || 800M | Automatic 1.8M

Table 1. Text size, paraphrase extraction method and the number of
phrase pairs extracted from different Chinese text data sources.

The word level paraphrastic 4-gram LM, as is shown in the 4th
line of table 2, outperformed the word level baseline LM “w4g”
(shown in 1st line of table 2) by 0.3%, and the class LM baseline
(shown in 2nd line of table 2) 0.2% absolute respectively. The two
multi-level LMs in table 2 both used a total of 503k distinct multi-
word phrases found in the paraphrase phrase table in addition to the
baseline 63k word list. The baseline non-paraphrastic multi-level
LM, shown in 3rd line of table 2, was trained on the phrase level text
data obtained using a longest available word to phrase segmentation.
The paraphrastic multi-level LM, shown in the last line of table 2,
outperformed its comparable non-paraphrastic baseline by 0.2% ab-
solute. Using this paraphrastic multi-level LM, an overall significant
CER reduction of 0.5% absolute was obtained over the word level
4-gram baseline LM. It also outperformed the word level 4-gram
baseline LM trained using the full training set of 4 billion words,
with 24 more text sources, by 0.4% absolute. These results, together
with those previously reported in [15] for English conversational
telephone speech, confirm the cross-genre generalization ability of



paraphrastic LMs, as well as their scalability when large amounts of
data is used in training.

[ LM | Paraphrastic || dev09s |
wig 10.4
w4ag+clslm X 10.3
wég o pdg 10.1
wag J 10.1
wég o pdg 9.9

Table 2. Performance of LMs trained using BN, BC, GigaXin and
GaleWeb data on dev09s. “w4g” denotes word level 4-gram LM,
“wdg+clslm” a word level 4-gram LM interpolated with a class LM
with 1000 classes, and “w4g o p4g” a multi-level LM log-linearly
combining word and phrase level 4-gram LMs.

So far in this paper, paraphrastic LMs have been used to improve
the performance of n-gram LMs. As discussed in section 4, it’s also
interesting to investigate the combination between paraphrastic LMs
and state-of-the-art language modelling techniques, such as neural
network LMs [23]. A total of four LMs shown in table 2, including
the baseline 4-gram word level LM, its paraphrastic counterpart, and
the two multi-level LMs, were combined with various neural net-
work LMs using the method presented in section 4. A word level
4-gram NNLM with an OOS output layer node [19] was trained us-
ing the 20 million words of the BN+BC acoustic transcription only.
The size of the NNLM input and output vocabularies are 45k and 20k
words respectively. The associated coverage rate of its input and out-
put vocabularies on the test data are 100% and 97%. A phrase level
4-gram NNLM was also trained using the same data, and the same
phrase segmentation used by the multi-level LMs of table 2. Its input
and output vocabularies contain 100k and 20k most frequent phrases.
The coverage rate of its input and output vocabularies on the phrase
level segmented test data are 98% and 85% respectively. For both
the word and phrase level NNLMs, a total of 600 projection layer
nodes and 400 hidden layer nodes were used. The performance of
the baseline and the paraphrastic 4-gram word level LMs without
any interpolation with NNLMs, are shown in the 1st and 4th lines of
table 3 (also previously shown in the 1st and 4th lines of table 2).

Paraphrastic
LM n-gram LM dev09s
wig 10.4
wég+nn,, X 10.0
(w4g+nn,,) o (p4g+nny,) 9.8
wig 10.1
wéag+nny, Vv 9.7
(w4g+nn,,) o (p4g+nny,) 9.5

Table 3. Performance of LMs trained using BN, BC, GigaXin and
GaleWeb data on dev09s. “w4g” denotes word level 4-gram LM,
“wdg+nn,,” a word level 4-gram LM interpolated with an NNLM,
and “(w4g+nny) o (p4g+nng)” a multi-level LM log-linearly com-
bining word and phrase level LMs, after a linear interpolation be-
tween 4-gram LMs and an NNLM at both word and phrase level.

The results in table 3 show that the improvements from para-
phrastic LMs and neural network LMs are largely additive. For
example, the word level paraphrastic 4-gram LM outperformed the
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baseline 4-gram LM “w4g” by 0.3% absolute. The same improve-
ment was retained when both LMs were combined with the word
level NNLM, “w4g+nn,,”, as are shown in the 2nd and the 5th line
of table 3 respectively. These results confirm the complementarity
between paraphrastic LMs and neural network LMs as discussed in
section 1. Consistent with the results shown in table 2, further im-
provements were obtained using multi-level LMs. The best perfor-
mance was obtained using the paraphrastic multi-level LM shown in
the bottom line of table 3, which used a three-way interpolation be-
tween the baseline LM, paraphrastic LM and neural network LM at
both word and phrase level before a log-linear combination was per-
formed. Using this LM, total error rate reductions of 0.9% absolute
(9% relative) and 0.5% absolute (5% relative) were obtained over the
baseline 4-gram word level LM “w4g” and the NNLM “w4g+nn,,”
respectively, both being statistically significant. The genre specific
CER reductions over the baseline 4-gram LM “w4g” are 0.5% abso-
lute (9% relative) for BN and 1.2% absolute (8% relative) for BC.

6. CONCLUSION AND RELATION TO PRIOR WORK

This paper investigated using statistical paraphrase approach to im-
prove the context coverage and generalization of n-gram LMs for
Mandarin Chinese broadcast speech recognition. The resulting para-
phrastic LMs were then combined with word and phrase level neu-
ral network LMs. Significant error rate reductions of 5.0%-9.0%
relative were obtained on a state-of-the-art LVCSR system trained
on 1960 hours of speech and 1.5 billion words of text data. To-
gether with earlier results published on a US English conversational
telephone speech transcription task [15] for improving n-gram mod-
elling only, the research presented in this paper demonstrates the pro-
posed technique’s cross genre generalization, scalability and com-
plementarity with other modelling techniques. In contrast, previ-
ous research only investigated using manually derived expert word
level synonym features [8, 10, 7, 3] to improve probability smooth-
ing or word clustering. The statistical paraphrase generation based
approach was not considered in any of these earlier works. Future
research will focus on improving paraphrase extraction, modelling
and directed paraphrasing for task and style adaptation.
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