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ABSTRACT

Code-switching is a very common phenomenon in multilingual com-
munities. In this paper, we investigate language modeling for con-
versational Mandarin-English code-switching (CS) speech recogni-
tion. First, we investigate the prediction of code switches based on
textual features with focus on Part-of-Speech (POS) tags and trigger
words. Second, we propose a structure of recurrent neural networks
to predict code-switches. We extend the networks by adding POS in-
formation to the input layer and by factorizing the output layer into
languages. The resulting models are applied to our task of code-
switching language modeling. The final performance shows 10.8%
relative improvement in perplexity on the SEAME development set
which transforms into a 2% relative improvement in terms of Mixed
Error Rate and a relative improvement of 16.9% in perplexity on the
evaluation set which leads to a 2.7% relative improvement of MER.
Index Terms: code-switching, recurrent neural network language
model

1. INTRODUCTION

Code-switching speech is defined as speech that contains more than
one language (’code’). The switch between languages may happen
between or within an utterance. It is a common phenomenon in
many multilingual communities where people of different cultures
and language background communicate with each other [1]. For
the automated processing of spoken communication in these sce-
narios, a speech recognition system must be able to handle code
switches. Usually, speech recognition systems are monolingual and
that is why the task appears to be very difficult to solve. Another
challenge is the lack of bilingual training data. While there have
been promising research results in the area of acoustic modeling,
only few approaches so far address code-switching in the language
model. Recently, it has been shown that recurrent neural network
language models (RNNLMs) improve perplexity and error rates in
speech recognition systems in comparison to traditional n-gram ap-
proaches [2, 3, 4]. One reason for that is their ability to handle longer
contexts. Furthermore, the integration of additional features as in-
put is rather straight-forward due to their structure. In this paper, we
propose a recurrent neural network language model applied for code-
switching. We extend its traditional structure by integrating features
into the input layer and by factorizing the output layer using lan-
guage information. Our experimental results demonstrate that this
approach leads to significant improvements in terms of perplexity
which transform into decent error rate reductions. Figure 1 illus-
trates our code-switching system.
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Fig. 1. Overview: our code-switching system

The remainder of the paper is organized as follows: Section 2 re-
ports on previous research in the area of code-switching and lan-
guage modeling using recurrent neural networks. Section 3 describes
the SEAME corpus. Section 4 analyzes the corpus and focuses on
the detection of trigger events for code-switching. Section 5 explains
our approach of recurrent neural network language modeling for the
code-switching task. In section 6, we present our experiments and
results. The study is concluded in Section 7.

2. RELATED WORK

Linguistic analyses of the code-switching phenomenon helps to bet-
ter understand the task and challenges and thus, might help to create
an appropriate language model. Hence, various studies on code-
switching are described. Furthermore, recent developments in the
research on recurrent neural network language models are presented.

2.1. The Code-Switching Phenomenon

In [5, 6, 7], it is observed that code-switches only occur at positions
in an utterance where they do not violate the syntactical rules of the
involved languages. While [8] argues that the code-switching points
are indeterminant because the code-switching decision is entirely up
to the individual speakers, [9] discovers some code-switching pat-
terns across speakers. It is shown that speakers mainly switch to
another language for nouns and object noun phrases. Therefore, the
most frequent switch points are between determiners and nouns and
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between verb phrases and object noun phrases.
In [10], different machine learning algorithms (for instance the Naive
Bayes Classifier) trained on textual features are used to predict code-
switching points. The features include word form, language iden-
tity, Part-of-Speech tags and the position of the word relative to
the phrase. [11] compares four different kinds of n-gram langua-
ge models to handle code-switching. It is discovered that a class-
based model which clusters all foreign words into their POS classes
achieves the best performance. In our previous work [12], we created
additional training data for the code-switching task using machine
translation. The interpolation of the artificial data with the original
code-switching transcriptions outperforms the baseline model.

2.2. Language Modeling Using Recurrent Neural Networks

In the last years, neural networks have been used for a variety of
tasks. [2] introduced a refined form of neural networks for the task
of language modeling. The so-called recurrent neural networks are
able to handle long-term contexts since the input vector does not
only contain the current word but also the previous output from the
neurons in the hidden layer. It is shown that these networks out-
perform traditional language models such as n-grams which only
contain very limited histories. In [3], the network is extended by
factorizing the output layer into classes to accelerate the training and
testing processes. Recently, further information has been added to
the neural network. [4] augments the input layer to model features
such as topic information or Part-of-Speech tags.

2.3. Our Contribution

In this work, we extend the recurrent neural network language mo-
deling toolkit [13] for code-switching. Our analyses which are pre-
sented in section 4, show that textual features such as words and
Part-of-Speech tags might predict code-switching points. To model
this in the structure of our network, we add POS tags to the input
layer and the set of all possible languages to the output layer. This
leads to the following computation of probabilities as described in
section 5: Based on the current word, the current features, and the
history of words and features, the probability for the succeeding lan-
guage is computed. Then, the probability for the next word is com-
puted given the language. This approach which utilizes the factor-
ization of the output layer models the results of the analyses of the
code-switching phenomenon. Our experiments demonstrate a sig-
nificant improvement in terms of perplexity. Moreover, it is shown
that rescoring n-best lists with our code-switching language model
outperforms the baseline system.

3. SEAME CORPUS

SEAME (South East Asia Mandarin-English) is a conversational
Mandarin-English code-switching speech corpus recorded from Sin-
gaporean and Malaysian speakers [14]. The recordings consist of
spontanously spoken interviews and conversations. Since the pub-
lication in [14], the corpus has been extended to about 63 hours of
audio data. For this task, all hesitations are deleted and the tran-
scribed words are divided into four categories: English words, Man-
darin words, particles (Singaporean and Malaysian discourse par-
ticles) and others (other languages). These categories are used as
language information in our neural networks. The average number
of code-switches between Mandarin and English is 2.6 per utterance.
The duration of monolingual segments is very short: More than 82%
English and 73% Mandarin segments last less than 1 second, while

the average duration of English and Mandarin segments is only 0.67
seconds and 0.81 seconds respectively. In total, the corpus contains
9,210 unique English and 7,471 unique Mandarin vocabulary words.
It is divided into three disjoint sets (training, development and test
set). The data is assigned based on several criteria (gender, speaking
style, ratio of Singaporean and Malaysian speakers, ratio of the four
categories, and the duration in each set). Table 1 lists the statistics of
the SEAME corpus in these sets.

Table 1. Statistics of the SEAME corpus
Train set Dev set Eval set

# Speakers 139 8 10
Duration(hours) 59.2 2.1 1.5
# Utterances 48,040 1,943 1,018
# Token 525,168 23,776 11,294

4. PREDICTION OF CODE-SWITCHES

Similar to the investigations summarized in section 2.1, we per-
form an analysis of textual features that trigger code-switches on
the SEAME data corpus. We concentrate on words and Part-of-
Speech tags because an analysis in [15] showed that those are the
most important trigger events. We rank them according to their
code-switching rate. The code-switching rate is calculated by the
frequency of occurences preceeding code-switching points divided
by the frequency in the entire text. We considered only those words
and POS tags which appear more than 1000 times in the text, corre-
sponding to more than 2% of the entire word tokens.

4.1. Trigger Words

We analyze which words occur frequently immediately in front of
code-switching points. Table 2 shows the top five Mandarin and the
top five English words preceeding a code-switching point.

Table 2. Mandarin and English trigger words for code-switching
points

word frequency CS-rate
那个(that) 5261 53.43 %
我的(my) 1236 52.35 %
那些(those) 1329 49.44 %
一个(a) 2524 49.05 %
他的(his) 1024 47.75 %
then 6183 56.25 %
think 1103 37.62 %
but 2211 36.23 %
so 2218 35.80 %
okay 1044 34.87 %

4.2. Part-of-Speech (POS) tags as trigger

Since code-switching speech consists of more than one language,
the task of assigning POS tags to words cannot be solved using a
traditional monolingual tagger. Hence, we created a POS tagger for
code-switching text data [15]. We determine Mandarin as the matrix
language (main language of an utterance) and English as the embed-
ded language (the other language) for the SEAME corpus. Three or
more consecutive words of the embedded language are called lan-
guage islands. Those language islands are passed to the Part-of-
Speech tagger of the embedded language. The remaining part is
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tagged by the tagger of the matrix language. The idea is to provide
chunks which are monolingual or contain only a short part of the em-
bedded language to obtain as much context as possible. We use the
Stanford log-linear POS tagger for Chinese and English as described
in [16, 17]. The tags are derived from the Penn Treebank POS tag
set for Chinese and English [18, 19].
An analysis shows that most English words are falsely tagged as
nouns by the Chinese tagger. To avoid subsequent errors in the de-
termination of trigger POS tags, we add a postprocessing step to the
tagging process: We select all English words that are no language
islands and pass them to the English Part-of-Speech Tagger. Then
we replace the POS tags of the Chinese tagger with these new tags.
After having tagged the code-switching text, we are able to select
those tags that possibly predict code-switching points. Two analy-
ses are made as shown in table 3. First, we consider only those tags
that appear in front a code-switching point from Mandarin to En-
glish. Second, we investigate the tags predicting a code-switching
point from English to Mandarin. Table 3 shows that code-switching
points are most often triggered by determiners in Mandarin and by
nouns in English. This seems reasonable since it is possible that a
Mandarin speaker switches for the noun to English and immediately
afterwards back to Mandarin. It corresponds to previous investiga-
tions as described in section 2.

Table 3. Mandarin and English POS that trigger a code-switching
point

Tag meaning frequency CS-rate
DT determiner 11276 40.44 %
DEG associative的 4395 36.91 %
VC 是 6183 25.85 %
DEC 的 in a relative-clause 5763 23.86 %
M measure word 2612 23.35 %
NN noun 49060 49.07 %
NNS noun (plural) 4613 40.82 %
RB adverb 21096 31.84 %
JJ adjective 10856 26.48 %
CC coordinating conjunction 4400 24.05 %

5. RECURRENT NEURAL NETWORK LANGUAGE
MODELING FOR CODE-SWITCHING

In this section, we describe the original version of the RNNLM
toolkit [13] and our extension to it. Figure 2 illustrates our exten-
sion. Nevertheless, the vector names in the following description
can be found in it as well. Vector w(t) forms the input of the re-
current neural network. It represents the current word using 1-of-N
coding. Thus, its dimension equals the size of the vocabulary. Vector
s(t) contains the state of the network. It is called ’hidden layer’. The
network is trained using back-propagation through time (BPTT), an
extension of the back-propagation algorithm for recurrent neural net-
works. With BPTT, the error is propagated through recurrent con-
nections back in time for a specific number of time steps t. Hence,
the network is able to remember information for several time steps.
The matrices U , V and W contain the weights for the connections
between the layers. These weights are learned during the training
phase. Moreover, the output layer is factorized into classes to ac-
celerate the training and testing processes. Every word belongs to
exactly one class. The classes are formed during the training phase
depending on the frequencies of the words. Vector c(t) contains the
probabilities for each class and vectorw(t) provides the probabilities

for each word given its class. Hence, the probability P (wi|history)
is computed as shown in equation 1.

P (wi|history) = P (ci|s(t))P (wi|ci, s(t)) (1)

The following part describes the recurrent neural network language
model which we developed for code-switching.

w(t)

 f(t)

s(t)

 y(t)

 c(t)

U
1  V

WU
2

Fig. 2. RNNLM for code-switching
(based upon a figure in [3])

In our extension, the classes of the output layer do not depend on
the frequencies of the words but on their languages. We use the lan-
guage categorization described in section 3. Therefore, our model
consists of four classes: One class for all English words, one for all
Mandarin words, one for other languages and one for particles. This
conforms to the code-switching task because first, the probability of
the next language is computed and then the probability of each word
given the language. Furthermore, we extend the input layer by con-
catenating vector w(t) with vector f(t) which provides features cor-
responding to the current word. According to the analysis described
in section 4, we use POS tags as features. We do not use words as
feature input for the network because trigger words are implicitly
modeled by vector w(t). Vector f(t) consists of 67 elements since
the Mandarin words in the vocabulary of the SEAME transcriptions
are assigned to 31 POS tags and the English words to 34 POS tags.
In addition, the words classified as other languages and the particals
form own classes. For each word, a relationship to its POS tag is
established. Thus, during the training and testing phases, not only
the current word is activated but also its feature. Because the POS
tags are integrated into the input layer, they are also propagated into
the hidden layer and back-propagated into its history s(t). Thus, not
only the previous feature is stored in the history but also all features
several time steps in the past. In equation 1, the term P (ci|s(t))
computes the next language ci using not only information about pre-
vious words, but also about previous features.

6. EXPERIMENTS AND RESULTS

In this section, we present the experimental results achieved with our
speech recognition system developed for the code-switching task.

6.1. Code-Switch ASR System

Based on the SEAME corpus, we developed a speech recognition
system (ASR) as described in [12]. This two-pass system applies
first a speaker independent acoustic model which is trained with
bottleneck features [20]. The second one is developed by apply-
ing Speaker Adaptive Training (SAT) with Feature Space Adaptation
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(FSA). To adapt to the code-switching problem and improve accu-
racy, language identity information is integrated into the decoding
process using a multistream approach [21]. To obtain a dictionary,
the CMU English [22] and Mandarin pronunciation dictionaries [23]
are merged into one bilingual pronunciation dictionary. The number
of English and Mandarin entries in the lexicon is 135k and 130k
respectively. Additionally, we apply several rules from [24] which
might delete or change a phone to generate pronunciation variants
for Singaporean English. On the language model side, the SRI Lan-
guage Modeling Toolkit [25] is used to build trigram language mod-
els (LMs) from the SEAME training transcriptions containing all
words of the transcriptions. These models are interpolated with two
monolingual language models that were created from 350k English
sentences from NIST and 400k Mandarin sentences from the GALE
project which had been collected from online newspapers. The vo-
cabulary of 30k entries contains all words in the transcriptions and
the most frequent words in the monolingual corpora.
Furthermore, characteristics of code-switching from the SEAME
training transcriptions are analyzed and additional code-switching
text is generated artificially as described in [12]. The resulting lan-
guage model has a perplexity of 483.9 and an out-of-vocabulary
(OOV) rate of 1.21% on the SEAME development set transcriptions.
This baseline system achieves an error rate of 35.5% MER on the
SEAME development set.

6.2. Language Modeling with the Standard RNNLM

A recurrent neural network without classes serves as a baseline sys-
tem. It is trained using the code-switching transcriptions. The size of
the hidden layer is set to 50 and the BPTT algorithm ran in a block
mode with a block size of ten for at least five steps. These para-
meters were tuned on the development set. This baseline language
model has a RNN-perplexity of 246.60 on the development set and
of 287.88 on the evaluation set.

6.3. Language Modeling with Code-Switch RNNLMs

A recurrent neural network with factorization of the output layer is
developed (RNNLM + OF). All other parameters stay the same as
in the baseline system to ensure comparability. The classes used
are languages: Each English word is mapped to one class and each
Mandarin word to another. The third class contains the Mandarin
particles and the forth class all other words. This approach reaches a
perplexity of 239.64 on the development set and 269.71 on the eva-
luation set. Hence, the computation of the words depending on their
languages improves the performance of the language model in terms
of perplexity.
Another network is trained by extending the input layer with POS
tags (RNNLM + FI). This achieves a perplexity of 233.50 on the
development set and 268.05 on the evaluation set. Apparently, the
RNNLM + FI system outperforms the RNNLM + OF system.
Finally, a network is generated with a combination of both tech-
niques (RNNLM + FI + OF). The resulting perplexity is 219.85 on
the development set and 239.21 on the evaluation set which gives a
relative improvement of 10.8% on the development set and of 16.9%
on the evaluation set. It outperforms both the RNNLM + OF and the
RNNLM + FI.

6.4. ASR Experiments Using N-best Rescoring

We finally present the performance of each model in terms of mixed
error rate when using it for rescoring. In these experiments, we
rescore the 100-best lists of our ASR system with different settings
for language model weights (lz) and word insertion penalties (lp).

Equation 2 shows how the score for each hypothesis is computed.
|w| denotes the number of words in the hypothesis and λ the inter-
polation weight of the recurrent neural network language model. In
our experiments, λ is set to 0.5.

scorelm = λ · scorernnlm + (1− λ) · scoren−gram

score = lz · scorelm + scoream + lp · |w|
(2)

As performance measure, we have established the Mixed Error Rate
(MER) which applies word error rates to English and character error
rates to Mandarin [12]. It is the weighted average over all English
and Mandarin parts of the speech recognition output. By applying
character based error rates to Mandarin, the performance does not
depend on the word segmentation algorithm for Mandarin. Thus,
the performance can be compared across different segmentations. In
this case, we used a manual word segmentation.
The code-switching language model (RNNLM + FI + OF) achieves
the best result with a mixed error rate of 34.7% on the development
set and an error rate of 29.2% on the evaluation set. This is an im-
provement of 2% and 2.7% relative to the baseline system as sum-
marized in table 6.4. (However, this improvement is not statistically
significant on the evaluation set compared to the RNNLM baseline.)

Table 4. PPL- and MER-results of different models
Model PPL PPL MER MER

dev set eval set dev set eval set
3-gram - - 35.5 % 30.0 %
RNNLM Baseline 246.60 287.88 35.6 % 29.3 %
RNNLM + OF 239.64 269.71 34.9 % 29.4 %
RNNLM + FI 233.50 268.05 34.8 % 29.3 %
RNNLM + FI + OF 219.85 239.21 34.7 % 29.2 %

OF: output factorization, FI: feature integration

We perform an analysis on the SEAME development set to investi-
gate why the RNNLM + FI + OF performs better than the standard
trigram model. The analysis shows that the trigram model recog-
nizes 1889 code-switching points (41.11%) correctly, whereas the
RNNLM + FI + OF detects 1990 code-switches (43.31%) correctly.
In addition, the RNNLM + FI + OF outperforms the trigram model
on monolingual segments. On English segments, it achieves a word
error rate (WER) of 49.07%, while the trigram model has a WER
of 50.21%. On Mandarin segments, the character error rates are
30.32% and 30.90% respectively.

7. CONCLUSIONS

This paper presents our latest investigation on language modeling
for conversational Mandarin-English code-switching speech. We
showed that particular words and Part-of-Speech tags trigger code-
switches more frequently than others. We presented an extension of
the standard recurrent neural network for the code-switching task.
We used language information to factorize the output layer and in-
tegrated Part-of-Speech tags into the input layer. Our experimen-
tal results show that this novel RNNLM outperforms the standard
RNNLM in both the perplexity and the mixed error rate. In terms
of perplexity, the RNNLM + FI + OF achieves a relative improve-
ment of 10.8% relative on the development set and 16.9% on the
evaluation set. Regarding the MER, the final performance shows
2% relative improvement on the SEAME development set and 2.7%
relative on the evaluation set.
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