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ABSTRACT
Spoken dialogue systems provide a convenient way for users to in-
teract with a machine using only speech. However, they often rely on
a rigid turn taking regime in which a voice activity detection (VAD)
module is used to determine when the user is speaking and decide
when is an appropriate time for the system to respond. This pa-
per investigates replacing the VAD and discrete utterance recogniser
of a conventional turn-taking system with a continuously operating
recogniser that is always listening, and using the recogniser 1-best
path to guide turn taking. In this way, a flexible framework for incre-
mental dialogue management is possible. Experimental results show
that it is possible to remove the VAD component and successfully
use the recogniser best path to identify user speech, with more ro-
bustness to noise, potentially smaller latency times, and a reduction
in overall recognition error rate compared to using the conventional
approach.

Index Terms— Dialogue system, ASR, VAD, POMDP, incre-
mental ASR

1. INTRODUCTION

Spoken dialogue systems provide a convenient way for users to inter-
act with a machine using speech. They are often deployed in noisy
environments such as in-car applications, where the user does not
have their hands free to interact in any other way.

Conventional dialogue systems typically use the idea of a dia-
logue turn being a user turn followed by a system turn. Only when
the user has finished speaking does the system process the user in-
put and take any action. This gives rise to a rigid model of turn-
taking, which can be unnatural to users. There are many conditions
under which users employ a more flexible turn-taking model, for
example when they are under cognitive load and use more fillers,
hesitations and barge-ins [1]. Furthermore, rigid turn-taking models
often rely on a voice activity detection (VAD) component to decide
whether the user is speaking or not, and this component can per-
form poorly, especially in noisy conditions, leading to confusion if
the speech/non-speech classification is incorrect. To improve user
satisfaction, several commercially deployed systems avoid the VAD
problem by using a push-to-talk button, e.g. [2].

Recent research has suggested the use of an incremental dia-
logue system that allows for a more flexible turn taking model [3,
4, 5]. This paper investigates the replacement of the separate VAD
and automatic speech recognition (ASR) components of a POMDP
dialogue system [6] by a single continuously operating ASR com-
ponent that is always listening in order to facilitate incremental di-
alogue. Experimental results show that it is possible to remove the
VAD module entirely and, with appropriate training data, achieve
an improvement in the detection of speech with potentially lower la-
tency times. This framework gives the further advantage of increased
flexibility and fewer components to adapt.

The outline of this paper is as follows. Section 2 discusses pre-
vious work in the area, section 3 discusses the incremental dialogue
management using only the ASR output, section 4 presents experi-
mental results, and section 5 draws conclusions.

2. EXISTING WORK

Incremental dialogue management has been proposed as a way of
achieving a flexible turn-taking model in dialogue systems. This sec-
tion discusses existing work on incremental dialogue management,
and existing work on VAD.

2.1. Incremental dialogue
Recent work in dialogue systems has moved away from using a rigid
model of turn-taking and towards using incremental ASR results to
determine the best system action before the user has finished speak-
ing [3, 5, 4]. Partial, or incremental, ASR results are periodically
obtained while the user is speaking, and the dialogue manager de-
cides whether to act on these partial hypotheses or not, based on
all available information. In this paper, the term “dialogue man-
ager” refers to everything downstream from ASR, to simplify the
discussion. In reality, the dialogue manager of a POMDP system
consists of several components such as semantic decoding, belief
state update, TTS etc. An incremental dialogue system can enable
modelling of conversational effects that are difficult to model with
a strict turn-taking model, such as split utterances, users changing
their mind, self-correction and hesitations, barge-in and backchan-
nels on the part of both the system and the user.

Incremental ASR results have the problem that partial hypothe-
ses are often unstable, particularly at the beginning of a word. That
is, the words that are on the best path at one point in time may change
by the next point in time. Thus, the best system action may also be
unstable. The stability and accuracy of partial hypotheses has been
measured using features collected from the decoding lattice [7, 8].
Such metrics can be used by the dialogue manager to decide whether
to make use of a partial hypothesis or whether to discard it and wait
until the next partial hypothesis is seen. The expected stability of
partial hypotheses can also be improved. In [7], the points at which
partial hypotheses are computed are carefully selected to be at times
when the ASR either has high confidence in the current word or the
language model end of utterance symbol has been reached. In [9],
additional right context is included before a partial hypothesis is re-
turned, which introduces a short lag but improves stability.

One final decision to be made in an incremental dialogue system
is when the system should respond to the user. The system can re-
spond immediately as in [5], thus potentially interrupting the user, or
wait until the end of a user utterance. In [10], prosodic and syntactic
features were used to predict the end of a user utterance without hav-
ing to wait for a user silence. Alternatively, the system can estimate
the optimal moment to barge in based on, for example, a measure
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of information density in the user’s utterance [11]. Such prediction
is useful in allowing incremental dialogue systems to respond at ap-
propriate times with minimal delay.

Despite the issues with using partial ASR hypotheses, incremen-
tal dialogue systems have been shown to be favoured by users, even
if they do not yield improved objective performance, due to their
speed and naturalness [3]. However, the system architecture is com-
plicated by the use of an incremental dialogue manager which re-
ceives potentially conflicting information about macro turns from
the VAD module, and about micro turns from the ASR module.

2.2. Voice Activity Detection
Voice activity detection is typically a computationally efficient pre-
processing step to classify audio frames as either speech or non-
speech, so non-speech frames can be discarded and only speech seg-
ments are passed downstream to the speech recogniser. The most
popular approach is to use speech and non-speech Gaussian mixture
models (GMMs) trained on appropriate data [12, 13], and to assign
each audio frame to the class which has the highest likelihood. Other
classifiers such as SVMs [14] and MLPs [15] have also been used.
This classification approach has been used successfully in LVCSR
tasks such as meetings [16, 15, 17] and broadcast news [18]. To
improve on the use of a single classifier, a hybrid approach was pro-
posed that uses a threshold on the energy of the audio to first discard
very low energy frames [19]. Then, only the high energy frames are
passed to the GMM classifier. The threshold is relative to the silence
level in the audio, which is estimated as the audio progresses.

However, VAD is often one of the weakest components of an
ASR system, particularly in noisy environments that are mismatched
to the training data. In ASR tasks, it is impossible to recover from
VAD errors where speech is incorrectly classified as non-speech, but
non-speech frames classified as speech are passed to the recogniser
and so can be transcribed as silence at the recognition stage. Hence,
VAD modules are often tuned to give a high recall of speech, at the
price of low precision. In a dialogue system where the VAD result is
also used as an input to the dialogue manager to control turn-taking,
incorrectly identifying noise as speech can lead to confusion where
the system thinks the user is speaking but the user is, in fact, silent.

Use of a VAD component is an easy way of reducing the compu-
tation done by the speech recogniser when computational resources
are limited. As available computational power increases, how-
ever, and the move is made towards server based systems, there
is less need to reduce the computational load of the ASR module.
It has long been acknowledged that the speech recognition com-
ponent itself is a far better speech/silence detector than a simple
speech/silence classifier since it has a much more accurate model
of speech. Recent efforts have been made to use feedback from
the speech recognition to adapt and improve VAD performance. In
[20], input features to the VAD classifier were derived from the state
output distributions of an LVCSR HMM set. Full decoding was not
performed, but instead a subset of likely Gaussians from the HMM
output distributions were used to compute approximate likelihoods
for broad phone classes, and these were fused with energy based fea-
tures for use in a GMM classifier. In [21], high confidence speech
and silence segments identified by the recogniser were used to adapt
the VAD models online, yielding gains in ASR performance. These
methods make use of acoustic models to improve the performance
of the VAD models.

This paper lays the framework for a flexible incremental dia-
logue system that has no explicit VAD module. In contrast to previ-
ous work, the ASR recogniser is listening continuously throughout
the dialogue without the use of a separate VAD classification stage.

Such an architecture simplifies the incremental dialogue manager
which no longer has to interface with two, potentially conflicting,
modules, allows for more flexible turn-taking models to be devel-
oped, and allows easy adaptation to noisy environments using pow-
erful techniques developed for noisy ASR. This idea is discussed in
more detail in the following section.

3. INCREMENTAL ASR WITHOUT VAD

There are many advantages to removing the VAD component of a di-
alogue system and relying solely on the ASR output. Reducing the
number of system components leads to a simpler architecture that is
easier to implement and test. Furthermore, using an always-on-ASR
component provides a framework in a dialogue system for a more
flexible turn-taking model. Dialogue turn-taking is complex, and
requires the system to recognise and make use of many verbal and
non-verbal cues. Recognition features can easily be included when
the system is making a decision about when to speak. The dialogue
manager can inspect partial ASR hypotheses or partial lattices at ap-
propriate times, before deciding whether to take action. Other cues,
such as prosody, can be integrated into the decision making process
to better determine the end of a user turn.

Performance of both ASR and VAD components are often de-
graded in noisy conditions, and so a key advantage of combining
VAD and ASR is the ability to adapt both at the same time, instead
of separately. Hence, more advanced speaker and noise robustness
techniques such as CMLLR, MLLR [22], VTS [23] or PCMLLR
[24] can be used to directly improve VAD performance alongside
ASR.

When removing the VAD component, the ASR best path can be
used to guide the dialogue system. Figure 1 shows the user of a
system uttering the phrase “Chinese <pause> in the centre”. The
recogniser best token at each frame (speech/silence) is shown below.
At point (a) the user has begun to speak and speech is detected on the
recogniser best path. There is a short lag between the user starting
and ending speech before the corresponding best token reflects the
true state, but the best token at this point can be traced back to find
the actual beginning of the speech. At point (b) silence is detected
as the user has paused in the middle of the utterance, and at point
(c), speech is again detected on the best path as the user has resumed
speaking. At point (d), there is silence again as the user has finished
speaking, and after a small number of frames, e.g. 30, there is still
silence on the best path and so the system can be confident that the
user has finished speaking. This is point (e) on the graph.

The dialogue system can then behave differently depending on
the point in a user turn. For example, points (b) and (d) can be used to
pass the partial hypothesis to the dialogue manager to begin prepar-
ing a response or to utter a backchannel. The belief propagation
algorithm for updating estimates of the dialogue state is a loopy it-
erative algorithm. At points (b) and (d), the current partial utterance
can be used to update the belief state, thus altering the dialogue be-
lief state before the user has finished speaking and before the system
has decided to take action.

To avoid interrupting the user, the system may delay respond-
ing until point (e). This introduces a lag between the end of user’s
speech and the system response, but this can be mitigated by per-
forming processing at points (b) and (d) and waiting until point (e) is
reached before responding. Points (b) and (d) can also be appropri-
ate places to utter backchannels or to interrupt the user. If the system
has determined that there is no match to the user’s request, e.g. no
Chinese restaurant that satisfies earlier constraints, the system can
interrupt the user to tell them so without waiting for the end of the
user utterance.
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Fig. 1. System user speaking the utterance “Chinese <pause> in the centre”’ and recogniser best path

Such strategies do not make full use of the ASR decoding result.
It is often possible to predict the word being spoken before the user
has finished speaking it, as the language model encodes some right-
context. For example, the user may be part-way through speaking
the word “Chinese” and the recogniser is confident that this is the
word being spoken. In this case, as soon as the recogniser is confi-
dent of the current word, the partial ASR hypothesis can be passed
downstream to the dialogue manager before the user has finished
speaking.

The use of confusion networks rather than 1-best or N-best word
strings has been shown to improve semantic decoding accuracy in
conventional turn taking systems [25]. The same performance gains
can be obtained in an incremental system since at any point in time t
a partial ASR decoding result can be returned in the form of a word
lattice or confusion network spanning the previously detected start
of the user utterance upto t.

This section has explained some of the ways in which the ASR
decoding result can be used to improve dialogue system naturalness
and responsiveness. The following section presents experimental re-
sults to demonstrate that an always-listening ASR module performs
better than a VAD module for detecting user speech, especially in
noisy data, with only a small change in ASR performance, thus en-
abling these techniques to be used in dialogue systems.

4. EXPERIMENTAL RESULTS

Experiments were carried out using audio data collected using a
restaurant information dialogue system deployed over a phone line.
This is a medium vocabulary ASR task where the ASR output feeds
into a statistical POMDP dialogue system. Two live trials were per-
formed to collect data sets GM1 and GM2. The first was collected in
a stationary car and the second in a moving car, each set was split
into a) a dev set used in training and b) a test set. Table 1 shows the
amount of data in each set. A large portion of the audio is silence
where the user is listening to the system speak.

GM1a GM1b GM2a GM2b

Audio (hrs) 8.5 5.8 9.7 5.8
Speech (hrs) 1.7 0.7 1.3 0.8
# Dialogues 361 242 467 312

Table 1. Data sets
Acoustic models were trained using 76 hours of narrowband

conversational speech, where speech segments with a small amount
of pre- and post-silence were extracted from the audio. Next, MAP
adaptation was used to adapt the models to task specific data, col-
lected during trials, followed by MPE training with the combined
data set. There are an average of 8 GMM components per HMM
state, with the number of components per state being proportional to
the amount of training data for that state. Each of the silence states
had roughly 30 components.

A language model was trained on 410k words of transcribed
speech from previous trials. A general background model was not

found to be helpful as the things that people tend to say in the con-
text of the dialogue system are very limited, and well covered by
data from previous trials. Thus the perplexity of the language model
is very low, around 6-14.

In order to perform ASR over whole dialogues, the language
model needs to allow for the silences between utterances. For decod-
ing segments and whole dialogues, different language models were
built. The first uses one entry per utterance in the dialogue with a
start and end of utterance symbol <s>, </s>, while the second uses
one entry per dialogue, with separate markers for the start and end
of utterance <u>, </u>, and start/end of dialogue <s>, </s>.

Segment language model:
<s> hello i’d like an italian restaurant

please </s>
<s> cheap </s>
<s> where is it </s>
<s> ok thank you good bye </s>

Whole-dialogue language model:
<s> <u> hello i’d like an italian

restaurant please </u> <u> cheap </u> <u>
where is it </u> <u> ok thank you good
bye </u> </s>

Two configurations were compared. First, a conventional con-
figuration was tested consisting of a VAD component feeding audio
segments to an ASR component. In the second test, ASR was per-
formed on the whole dialogue with no separate VAD component. A
key advantage of using ASR only is being able to adapt both the
VAD and the ASR in one step. Thus the goal was to perform offline
adaptation and adapt the system to the noisy data in set GM2. Base-
line VAD GMM models were trained on whole dialogues collected
during trials, including all the silence between user utterances. The
VAD GMMs had 256 components in the silence state and 128 in the
speech state. Initial VAD models (V1) were trained on clean data,
including the GM1a set. Noisy VAD models,V2, were trained by
also using the noisy GM2a data.

Table 2 shows that the inital VAD models, V1, perform well on
the matched clean dataset GM1, but their accuracy degrades on the
noisy GM2 data. The noisy VAD models, V2, have improved per-
formance on the noisy set GM2. For example, frame correctness for
the noisy test set GM2b rises from 84.3% to 89.8% when moving
from VAD models V1 to V2. Much of the error in the VAD accu-
racy arises as a consequence of noise being erroneously classified as
speech. On set GM2b when the frame correctness is 89.8%, speech
recall is 94.5% and speech precision is 61.4%.

ASR models A1 are trained on all data, and both the clean GM1a
and noisy GM2a dev sets were used as task specific data to perform
the final MAP adaptation and MPE stages. Table 2 also shows the
VAD results when these acoustic models were used to decode the
whole dialogue audio, and the recogniser best path was used to iden-
tify speech segments as described in section 3. The A1 ASR models
perform worse than the standalone VAD models, with a frame cor-
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VAD ASR GM1a GM1b GM2a GM2b
dev test dev test

V1 93.7 93.5 82.9 84.3
V2 95.3 95.5 89.5 89.8
- A1 75.9 73.0 72.5 76.0
- A2 98.0 98.3 95.5 96.6

Table 2. VAD performance, Frames Correct (%)

rectness of 76.0% on the noisy test set GM2b, and tend to identify
many non-speech segments as speech.

To address this poor performance, the decoding hypotheses us-
ing A1 models were used to identify segments of the audio that led
to erroneous insertions in the dev sets GM1a and GM2a. That is,
those ASR insertions that are hesitations or probable noise, but are
not immediately adjacent to actual segments of speech. A total of 5
hours of non-speech segments were collected this way, which were
then used during the MAP and MPE stages to train improved acous-
tic models A2. The silence models for A2 were not updated during
the MPE training stage since updating them was found to degrade
performance. Table 2 shows that these new acoustic models lead to
large improvements in VAD performance, and outperform the stan-
dalone VAD models, particularly on the noisy data where the frame
classification rate on the noisy test set was 96.6%.

These results show that a simple GMM classifier for identifying
speech and non-speech in noisy data becomes unreliable in noise,
even when the GMMs are trained on noisy data, and that appropri-
ately trained acoustic models can give a more reliable indicator of
user speech.

Table 3 shows the ASR word error rates for both scenarios. As
expected, results for the clean GM1 set are better than the noisy GM2
set, by roughly 10% absolute. ASR results are scored over the whole
dialogue, so a large source of errors results from inserted segments
where the audio contains non-speech. That is, where noises and non-
verbal sounds from the user are erroneously transcribed as speech.

VAD ASR GM1a GM1b GM2a GM2b
dev test dev test

V1 A1 23.3 29.7 29.1 38.1
V2 A1 23.1 29.4 27.0 37.5
V2 A2 19.7 24.4 22.4 34.0
- A1 28.4 34.5 41.0 44.3
- A2 19.3 23.8 22.4 32.9

Table 3. ASR performance, Word Error Rate (%)

When using VAD+ASR moving from the V1 to V2 VAD mod-
els, there is a small gain in ASR performance, 38.1 to 37.5% WER
on the GM2b test set. Then, when using the improved A2 acoustic
models, the improved performance of 34.0% is achieved on that set.

As expected because the A1 acoustic models had poor VAD per-
formance, they also have poor ASR performance when used contin-
uously with no VAD module. This is due to the large number of
insertions from noises and other non-vocal sounds. Finally, ASR
results show that using just acoustic models A2, the performance
achieved is comparable to that when using the standalone VAD mod-
els followed by ASR on each segment. For example, on the noisy
test set GM2b, performance improves from 34.0% to 32.9% when
moving from VAD+ASR to ASR only. This small improvement is
unlikely to be noticeable to the user of a statistical dialogue system,
and a greater effect on user satisfaction is likely to come from the
improved VAD performance leading to better turn-taking.

These results show that offline adaptation of ASR models to

noisy data and using continuous ASR works better than adapting
the ASR and the VAD models separately. The ASR models are more
robust to noise and the ASR best path can be successfully used for
voice activity detection, allowing for system behaviour such as that
described in the previous section.

VAD+ASR ASR

Reference segments identified 86% 83%
Inserted segments 63% 39%
Average error detecting end of speech 108ms 45ms
Expected latency >608ms <345ms

Table 4. Analysis of detected speech segments using V2 and A2
models on noisy test set GM2b

Table 4 shows an analysis of the segments predicted by both ap-
proaches, using the V2 and A2 models on the noisy test set GM2b.
The VAD models correctly identify more of the reference segments
than the ASR models alone, 83% compared to 86%, but the VAD
models also insert far more erroneous segments. 63% of the seg-
ments hypothesised by the VAD models are non-speech segments,
compared to only 39% of the segments predicted by the continu-
ously listening ASR models. The average error in detecting the end
of speech is also shown, for the correctly detected speech segments,
and is larger for the VAD models than for using the ASR decoding
path. Finally, the average error in the end border can be used to pre-
dict the expected latency in responding to the user. Using separate
VAD models, a lookahead window of 500ms has been found to give
good performance and this leads to an average delay of 608ms after
the user has finished speaking before the system can start preparing
a response. In contrast, the expected latency when using the ASR
path is shorter. In this paper, a conservative delay of 300ms has been
used to identify a segment as speech, i.e. the time between points
(d) and (e) in figure 1. However, all processing can be done at point
(d), leaving the system ready to respond as soon as the end of a user
utterance has been confirmed. This 300ms is a conservative figure,
and in practice the system can be ready to respond much earlier, and
even before the user has finished speaking if the final word is well
predicted by the language model.

5. CONCLUSIONS

Conventional dialogue systems normally use a cascade of VAD and
ASR components to identify when the user is speaking and what
they are saying. This imposes an artificial rigid turn-taking model
which is unnatural to users and can lead to poor user satisfaction
when using a spoken dialogue system.

This paper has investigated replacing the VAD+ASR cascade
with a single ASR component that is always listening, and using the
real-time decoded output to identify user speech. This more flexible
framework allows for more robust adaptation to noisy environments
and for finer control over turn-taking during dialogues.

Experimental results showed an improvement in VAD perfor-
mance when using acoustic models adapted for the noisy conditions,
a small improvement in ASR performance, and potential for much
shorter system response times. As statistical dialogue systems have
an inbuilt resiliance to ASR errors, it requires a large change in ASR
performance (perhaps 10% absolute) for the user to notice any ef-
fect. Thus the improved speech activity detection performance and
responsiveness are expected to improve user satisfaction.

Future work will involve moving this work from offline recog-
nition and adaptation to an online dialogue scenario and combining
it with an incremental turn-taking model.
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