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ABSTRACT

We propose to extract summary sentences from lexically untran-
scribed speech via phone tokenization. We use decoded phone se-
quences instead of words to train language models to infer seman-
tically significant utterances. Phone tokens yield comparable re-
sults to words on the TDT-2 English corpus, yet require significantly
less linguistic resources – no need for automatic speech recognition
(ASR): (1) Using decoded phones of high phone error rate (78.7%)
leads to comparable results to using ASR-decoded words. (2) Tok-
enizing English audio using a Czech phone recognizer leads to com-
parable results to using English words from closed-captions. These
trends parallel those established in spoken language recognition and
have practical significance: we can potentially summarize speech
passages of resource-poor languages by leveraging existing tools de-
veloped on resource-rich languages.

Index Terms— extractive speech summarization, phone recog-
nition, phone tokenization, spoken language understanding, spoken
document retrieval, audio indexing

1. INTRODUCTION

It is more difficult for a user to efficiently browse through audio pas-
sages than text passages to determine which particular passages to
focus on [1]. This issue could be resolved if an automatic system
can provide the most important sentences of the audio passages [2],
which is the goal of extractive speech summarization.

Approaches to extract speech summaries include supervised
and unsupervised ones. The former is a binary (i.e., summary
vs. non-summary) sentence-classification problem. Supervised ap-
proaches thus easily take advantage of acoustic, lexical, or structural
features [3]. Limitations of supervised methods include imbal-
anced classes, independence (bag-of-sentences) assumption, and the
cost of human-labeled summary sentences. Some researchers have
worked on addressing these limitations; e.g., [4] used structured
support vector machines to select important utterances while min-
imizing redundancy, [5] used regression and sampling to make the
classes more balanced and [6] used active learning to alleviate the
cost of manual labeling.

By contrast, unsupervised approaches do not require human-
labeled summaries during training and often model the relationship
among sentences (e.g., [7], [8]). Unsupervised approaches often fol-
low the traditional transcribe-and-summarize framework: speech is
first passed to an automatic speech recognition (ASR) system; the
decoded words are then input to a text summarizer. This paradigm
takes advantage of techniques from the text domain [9, 10], but also
brings forth several challenges [11]. First, ASR is often unavailable,
except for resource-rich languages (e.g., English). Second, even if
ASR were available for any language, the word transcripts generated

by the state-of-the-art systems are still error-prone and suffer from
out-of-vocabulary issues. To resolve these issues, past research has
focused on acoustic patterns (e.g., [12]) to extract summaries.

In this work, we exploit phonetic patterns instead. We use
language models trained on decoded phones to extract summaries,
inspired by well-established techniques in spoken language recog-
nition [13]. In addition to language recognition, such phonetic
tokenization approaches have been applied in other areas, including
spoken term detection [14], spoken document retrieval (e.g., [15],
[16]) and topic identification [17]. However, to the best of our
knowledge, no study has examined how well phonetic tokenization
works on speech summarization. In this work, we attempt to fill
in this gap. We want to find out if knowledge in spoken language
recognition can carry over to speech summarization in the following
two aspects.

(1) When extracting speech summaries, is it necessary to tok-
enize the audio in lexical units (e.g., words)? Can we relax lexi-
cal constraints (e.g., disregard word boundaries), but still summa-
rize well? If so, we can drastically reduce the linguistic resources
needed to train unsupervised summarizers: we no longer need ASR
- we only need a phone recognizer. (2) Does it matter what language
the phone recognizer was trained on? Can we use phone recognizers
trained on foreign languages to tokenize spoken documents, yet still
achieve robust summarization results? For example, can we summa-
rize English audio using a Czech phone recognizer? If the answers
are yes, we can further reduce the linguistic resources to automati-
cally summarize speech passages. To summarize English passages,
we do not even need an English phone recognizer - a phone recog-
nizer of any language will do. We attempt to address these questions
in this paper.

2. PHONETIC LANGUAGE MODEL SUMMARIZER

2.1. Extractive Summarization Scheme

We adopt the widely-used unsupervised summarization scheme,
Maximal Marginal Relevance (MMR) [18]. Given a spoken docu-
ment D, the MMR score of sentence Si is

MMR(Si) = R(Si)− λ max
j∈summary

Sim(Si, Sj), (1)

where the first termR(Si) is the relevance function determining how
relevant sentence Si is to the entire document D, and the second
term is the redundancy penalty for selecting sentence Si to be in the
summary set, which already contains Sj . Sentences are iteratively
chosen to maximize the total MMR score until the length constraint
of the summary is reached. The relevance function R(Si) is heuris-
tically defined; λ is tuned on a development set.
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Table 1. Phone recognition systems. ANN: artificial neural network; HMM: hidden Markov model; LM: language model; MFCC: mel-
frequency cepstral coefficient; PER: phone error rate; PLP: perceptual linear prediction; STC: split temporal context [24].

System Language Decoding
condition

Corpus Model Features Training
data (hr)

# of
phones

PER (%)
on TDT-2

PER (%) on
original corpus

EN-FA English Force Align WSJ0 [29] HMM PLP 14 40 0 0
EN-BG English Bigram LM WSJ0 HMM PLP 14 40 52.2 19.8
EN-PL English Phone Loop WSJ0 HMM PLP 14 40 63.5 21.7
EN-PL-2 [23] English Phone Loop TIMIT [27] HMM/ANN MFCC, STC 2.8 39 78.7 24.24
CZ [23] Czech Phone Loop SpeechDat(E) [23] HMM/ANN MFCC, STC 9.72 46 N/A 24.24
HU [23] Hungarian Phone Loop SpeechDat(E) HMM/ANN MFCC, STC 7.86 62 N/A 33.32
RU [23] Russian Phone Loop SpeechDat(E) HMM/ANN MFCC, STC 14.02 53 N/A 39.27

2.2. Phonetic Language Modeling

In this work, we define the relevance function R(Si) in Eq. (1)
as the posterior probability of document D given sentence Si, i.e.,
P (D|Si). We take the language modeling approach, where each
sentence Si can be viewed as a probabilistic model for predicting
the entire document D [19]. By further assuming that speech units
(e.g., words) are conditionally independent given the sentence S, and
their order is of no importance, P (D|S) can be decomposed into a
product of unigram probabilities of speech units u generated by sen-
tence S. The relevance score of sentence S is therefore defined as:

R(S) = P (D|S) =
∏
u∈D

P (u|S)c(u,D), (2)

where P (u|S) is the unigram probability of speech unit u given the
sentence S, which can be obtained through maximum likelihood es-
timation; c(u,D) is the number of times that speech unit u occurs in
document D. In this work, we propose to extend the speech units u
from words to n-grams of decoded phones (from any language).

The unigram probabilities in Eq.(2) were determined through
maximum likelihood estimation:

P (u|S) = c(u, S)

|S| , (3)

where the speech unit u are words, c(u, S) is the number of times
word u occurs in sentence S, and |S| is the number of words in S.

The redundancy penalty in the second term of Eq.(1) was based
on vector space modeling using cosine similarity. Each sentence Si

is represented in vector form, where each dimension zt,i specifies the
product of the term frequency (TF) and inverse document frequency
(IDF) of the word ut. The conventional cosine similarity between
sentence Si and Sj is then computed as:

Sim(Si, Sj) =

∑V
t=1 zt,i × zt,j√∑V

t=1 z
2
t,i,

√∑V
t=1, z

2
t,j

(4)

where V is the number of distinct words.

3. EXPERIMENTS

3.1. Setup

3.1.1. TDT-2 English Corpus

TDT-2 [21] was used in the NIST Topic Detection and Tracking eval-
uations [20]. We used 114 ABC broadcasts of 1,357 English news
stories (43 hrs) partitioned randomly into the development and test
set. The reference summaries and utterance boundaries are the same

as in [22]1. The length constraint of the extracted summary was set
at 5% of each story. We only evaluated short summaries since each
reference summary from [22] only contains one sentence.

3.1.2. Phone Recognition Systems

We adopted state-of-the-art phone recognizers [23, 24, 25] devel-
oped at Brno University of Technology (BUT). These phone recog-
nizers were successfully applied to the 2005 NIST language recogni-
tion evaluation [26]. The non-English (Czech, Hungarian, Russian)
phone recognizers were trained on SpeechDat(E) [23], while the En-
glish one was trained on TIMIT 2 [27]. Main attributes of these
phone recognizers (denoted as CZ, RU, HU, EN-PL-2) are listed in
Table 1; see [23] for more details.

Since TIMIT is relatively small in size, we also trained an
English phone recognizer on WSJ0 [29] (3states/phone; 32 Gaus-
sians/state; state-clustered triphones). As shown in Table 1, the
WSJ0 recognizer decoded phones under three conditions: (1) force
alignment (EN-FA) using closed caption transcripts; (2) phonetic
bigram language model (EN-BG), where the language model was
trained on WSJ0; (3) phone loop (EN-PL).

For the English systems, phone error rate (PER) was measured
on TDT-2 and their original corpus (WSJ0 or TIMIT). The phones
obtained through forced-alignment (EN-FA) were used as ground-
truth for PER computation. For the non-English BUT phone recog-
nizers, we only included the PER obtained from the SpeechDat(E)
corpus, since it is meaningless to measure PER on TDT-2 if the refer-
ence phones are in English and the decoded phones are non-English.

3.1.3. Evaluation Metrics

We adopted the widely-used ROUGE (Recall-Oriented Understudy
for Gisting Evaluation) [30]; in particular, we used ROUGE-1,
ROUGE-2, and ROUGE-L. ROUGE-N is an n-gram co-occurrence
statistics counting the number of overlapping n-grams of words
between the automatic summary and the reference summary:

ROUGE-N =

∑
S∈{Reference Summaries}

∑
gramn∈S

Countmatch(gramn)∑
S∈{Reference Summaries}

∑
gramn∈S

Count(gramn)

where n is the length of the n-gram, gramn; Countmatch(gramn)
is the maximum number of n-grams co-occurring in an automatic

1We thank Heidi Christensen for sharing human determined extractive
summaries and utterance boundaries with us.

2Phone recognition performance comparable to that of [28] (PER=24%),
trained by deep belief networks.
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summary and the reference summary. When n = 1, the metric is
ROUGE-1. ROUGE-L measures the longest common subsequence.

We assumed the extracted summary is presented in audio (in-
stead of text) as is in [19]; i.e., when using decoded words from
ASR, decoded words were used to compute scores using Eq.(2), but
once a candidate summary was chosen, the ROUGE evaluation uses
the words from the closed caption transcripts (since the output audio
does not suffer from ASR errors) to evaluate the automatic summary.

We also included a stricter measure than ROUGE, accuracy. Ac-
curacy is 1 if the extracted summary of a spoken document exactly
matches its reference summary; i.e., accuracy is 0, even if only one
word in the extracted summary differs from the reference summary.

3.2. Experimental Design

Language models expressed in Eq.(2) are computed using three
types of speech units u: (1) English word tokens, (2) English phone
tokens, (3) foreign (non-English) phone tokens.

3.2.1. English Word Tokens

We used two sets of English word tokens from TDT-2 English [21]:
(1) closed caption transcripts; (2) decoded words from the Dragon
ASR system (word error rate=30%).

3.2.2. English Phone Tokens

We decoded the spoken documents using the four English phone
decoding conditions (EN-FA, EN-BG, EN-PL, EN-PL-2) in Table
1. We used 3-grams (i.e., 3 consecutively decoded phones) as the
speech unit u in Eq. (1). This modeling choice was determined em-
pirically on the development set (3-grams performed slightly better
than 2-grams and 4-grams) and consulting prior work in topic iden-
tification [17] and spoken document retrieval [16].

3.2.3. Foreign Phone Tokens

We tokenize the English audio using the three non-English (Czech,
Hungarian, Russian) phone decoding conditions (CZ, HU, RU) in
Table 1.

4. RESULTS AND DISCUSSION

Summarization results vs. phone error rate (PER) for ROUGE-1,
ROUGE-L, and accuracy are shown in Fig. 1; all show similar
trends. (Results for ROUGE-2 are not shown due to space con-
straints, but ROUGE-2’s trends are the same as the other three met-
rics.) For English phone decoding, we show phone error rates on the
TDT-2 corpus (top panel) and those on the original corpus used to
train the phone recognizer (bottom panel). For non-English phone
decoding, only phone error rate on the original corpus are shown
(bottom panel) since phone error rate cannot be measured if the ref-
erence phones are English and the decoded phones are non-English.

Summarization results using English word tokens from closed
caption and ASR are statistically similar except for ROUGE-1,
where p ≈ 0.05. These results are baselines for the following
experiments using phone tokens.

4.1. English Phones Summarize as Well as English Words

We observe the following trends when comparing English word to-
kens and English phone tokens in Fig. 1: (1) Summarization perfor-
mance is inversely correlated with phone error rate (PER). (2) Sum-
marization results using English phone tokens from system EN-FA

(PER=0) is always better than English word tokens, be them from
closed caption or ASR (p < 0.05). (3) When PER (on TDT-2 cor-
pus) is above 50% (e.g., EN-BG, EN-PL), phone tokens achieve sim-
ilar summarization results as baseline word tokens.

4.1.1. Summarization Results Correlate with Phone Accuracy

The absolute value of Pearson correlation coefficient |r| ≥ 0.95 for
all blue curves with diamond markers; see Fig. 1 for details. When
PER on TDT-2 corpus increases from 0% to 52.2%, 63.5%, and
78.7% absolute, the relative drop in performance (averaged across
all four metrics) are 6.3%, 8.7%, 11.8% , respectively.

4.1.2. High Phone Error Still Yields Comparable Results to Words

While low PER leads to better summarization results, high PER still
compares favorably with those using English word tokens: When
PER is 52.2% (EN-BG) and 63.5% (EN-PL), phone tokens achieve
similar results as word tokens (closed-caption). Even when PER is
78.7% (EN-PL-2), phone tokens achieve similar results as ASR word
tokens. These results imply that while the decoded phones are not
the true phonetic identities, they can still be used to infer semantics
to extract reasonable summaries. Our results suggest that phonetic
language models are cost-effective for extracting speech summaries,
as the linguistic resources required to train a phone recognizer are
much lower than those for an ASR system.

4.1.3. Why Phone Tokenization Works

Our results imply that semantic significance of a spoken document
can still be inferred when lexical constraints are relaxed: (a) word
boundary relaxation (e.g., recognize speech and wreck a nice beach
are almost phonetically identical); (b) homophone relaxation: dis-
tinct words that sound the same but have different meanings are no
longer differentiated (e.g., no and know both become [n ow]).

Word boundary relaxation might not affect our summarization
model much, since word boundaries can be implicitly inferred from
co-occurrences of n-grams of phones that make up a word. For ex-
ample, if the word recognize is topic-revealing, trigrams of phones
modeling the word recognize will co-occur frequently in many sen-
tences. The sentences containing the consecutive words wreck a nice
would likely be significantly fewer and thus act as noise, so wreck a
nice would not overshadow the true keyword recognize.

We conjecture homophone relaxation is not a major issue either,
since few words sound the same but have different meanings in En-
glish, where the ratio of distinct words vs. different sounding words
is 3.2 (computed from [31]). At first glance, homophone relaxation
could present challenges in languages like Mandarin, where the ratio
of distinct characters vs. different sounding characters is 25 if dis-
regarding tones and 7.7 if considering tones (computed from [32],
[33]). But homophone relaxation might not affect Mandarin speech
summarization severely: Similar sounding characters are often dis-
ambiguated by its contextual characters; i.e., while many characters
sound the same, words are often formed with two or more charac-
ters, and are thus not as acoustically confusable. Therefore, Man-
darin words can still be modeled by co-occurring trigrams of phones
as described in word boundary relaxation. How other languages like
Mandarin are affected by these relaxations are open research ques-
tions worthy of future investigation.

4.1.4. Perfect Phone Tokens Outperforms Perfect Word Tokens

It is intriguing that PER=0 (EN-FA) performs better than using word
tokens. We suspect this improvement stems from distinguishing spo-
ken words identical in spelling but different in pronunciation. This
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Fig. 1. Performance and phone error rate (PER) are inversely correlated: average correlation coefficient for English phones (blue-diamond curves) are
−0.99 (top panel), −0.95 (bottom pannel) and that for non-English phones (red-square curves) is −0.96. Summarization results for non-English phones not
applicable for top panel (PER on the TDT-2 English corpus) since one cannot compute PER when the language of the decoded phone set (e.g., Czech) differs
from that of the reference phone set (English). Error bars represent standard error. Refer to Table 1 for details of the phone recognition systems EN-FA, EN-BG,
EN-PL, EN-PL-2, CZ, HU, RU.

difference potentially correlates with whether the spoken word is in
a summary sentence or not. These differences arise from speaking
styles (e.g., important words spoken with less reduction) or dialect
variations. For example, news anchors usually speak in the main-
stream dialect. Summary sentences tend to be from them instead
of interviewees, who more likely speak in non-mainstream dialects.
Assume dark knight is a key term of a news story. While a Bosto-
nian interviewee would likely delete the /r/ in dark, the news anchor
would not. The key term is modeled as [d aa r k n ay t] instead of [d
aa k n ay t], though both refer to the same lexical identity. We plan
to further investigate the factor of speaking style in future work.

4.2. Foreign Phone Tokens

4.2.1. Foreign Phones Summarize as well as English Words

Fig. 1 shows that English phone tokens do not always perform better
than foreign phone tokens. Summarization results from CZ are better
than those from EN-PL and EN-PL-2 and comparable to EN-BG
and English word tokens (closed-caption). Similarly, summarization
results from HU and RU are comparable to EN-PL and EN-PL-2,
respectively. From Fig. 1, we see that for foreign phone tokens
(CZ, HU, RU), summarization results are also inversely correlated
(r = −0.96) with phone error rate (on the SpeechDat(E) corpus).
These correlations parallel findings in language recognition [26].

These results suggest that when summarizing English audio, we
neither need an English ASR system, nor an English phone rec-
ognizer – all we need is a phone recognizer trained on any lan-
guage. Our findings suggest that we can significantly reduce linguis-
tic resources by leveraging existing tools developed on resource-rich
languages (e.g., English) to automatically summarize spoken docu-
ments in languages like Min Nan (aka Hokkien, Taiwanese; at least
47 million speakers [34]) or Malay (≈ 210 million speakers [35]).

4.2.2. Why Foreign Phone Tokenization Works

Similar to language recognition, tokenizing speech to phones of for-
eign languages characterizes the underlying acoustics. The higher
the accuracy of the phone recognizer, the better the characteriza-
tion power. This characterization helps infer semantically signifi-
cant portions of the audio. It does not matter which phone labels
(be them Czech or English) are used to map and model the underly-
ing semantic units, as long as this mapping is consistent. Our pho-
netic tokenization framework models similar information as acoustic
approaches [12], but we can directly leverage existing high perfor-
mance phone recognizers used in ASR or language recognition [23].
This leverage drastically reduces the required training time.

5. CONCLUSIONS

We proposed to extract summaries from lexically untranscribed
speech via phonetic language models; instead of using words to in-
fer semantic significance, we used decoded phones. We showed that
established knowledge in language recognition can be carried over to
speech summarization on the TDT-2 English corpus: (1) The higher
the accuracy of the phone recognizer, the better the summarization
results. (2) The language of the phone recognizer need not be En-
glish to summarize English audio. Czech phone tokens can lead
to better summarization results than English phone tokens, given
sufficiently low phone error rate. (3) High phone error rate (78.7%)
still leads to summarization results similar to English word tokens
decoded from the Dragon ASR system. These findings suggest
that we can summarize speech of any language even with limited
resources – all we need is a phone recognizer of any language; no
ASR is needed. For future work, we plan to investigate whether
these findings are generalizable to speaking styles like meetings.
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