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ABSTRACT

Supervised approaches can learn a spoken document summarizer
generating high-quality summaries using a set of training examples
matched to the domain of target documents. However, preparing a
sufficient number of in-domain training examples is expensive. In
this paper we propose an approach for unsupervised domain adap-
tation for spoken document summarization, so no in-domain train-
ing examples are needed. A summarizer is first learned from a set
of out-of-domain training examples by a supervised summarization
approach based on structured support vector machine, and this sum-
marizer is used to generate a set of initial summaries for the target
spoken documents. The target documents and their initial machine-
generated summaries then serve as extra training examples for learn-
ing a new summarizer, which further updates the summaries of the
target spoken documents. This process is continued iteratively to
incrementally improve the summarizer for the target spoken docu-
ments. Moreover, extra approaches transforming the feature repre-
sentations based on the data distribution in the target domain and
augmenting the representations with an extra set of domain-specific
features are also proposed. Encouraging results were obtained in
summarizing Mandarin-English code-switching course lectures us-
ing training examples from Mandarin broadcast news.

Index Terms— Speech Summarization, Unsupervised Domain
Adaptation, Structured Support Vector Machine

1. INTRODUCTION

This paper focuses on extractive summarization of spoken docu-
ments, or automatically selecting a subset of utterances in the spoken
document as the summary [1]. Although unsupervised approaches
such as Maximum Marginal Relevance (MMR) methods [2, 3] and
graph-based approaches [4, 5, 6, 7] have been successful, supervised
learning has been widely used [8, 9, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20]. For the latter, the task is usually treated as a binary
classification problem determining whether to include an utterance
in the summary. With a set of training spoken documents with refer-
ence summaries, the binary classifier can be very well trained with
positive and negative examples. Some approaches were also devel-
oped to directly select a whole utterance subset instead of selecting
them individually, so the relationships among the utterances can be
considered [21, 22].

If the target spoken documents and the training spoken docu-
ments are in the same domain, it is possible to learn a high-quality
summarizer for the target domain. However, preparing a sufficient
number of training examples in the target domain may be very ex-

pensive. For example, considering spoken lectures, because the con-
tent of the course lectures is usually for some specialized area, it is
very hard to collect enough number of related training spoken doc-
uments, not to mention hiring experts understanding the content to
produce reference summaries. Semi-supervised learning and super-
vised domain adaptation have been investigated for spoken docu-
ments to address this problem [23, 22], but some in-domain train-
ing examples are still needed for these approaches. In this paper, we
consider unsupervised domain adaptation for spoken document sum-
marization, that is, to leverage the out-of-domain training examples
at hand to summarize target spoken documents without in-domain
training examples.

Self-labeling [24], widely used in speaker adaptation [25, 26,
27], is used here. A summarizer is first learned from a set of out-
of-domain training examples. It is then used to summarize the target
spoken documents. The target documents and their initial machine-
generated summaries then serve as extra training examples for learn-
ing a new summarizer, which is in turn used to update the summaries
of the target spoken documents. This process is continued itera-
tively to incrementally improve the summarizer for the target spoken
documents. Self-labeling has been applied on e-mail summarization
based on binary classification [28], but here more powerful summa-
rization technique based on structured SVM [21] is used including
considering prosodic and other types of features, as well as feature
transformation across domains. Encouraging results were obtained
in the preliminary experiments of summarizing Mandarin-English
code-switching spoken lectures using training examples in Mandarin
broadcast news.

2. SUPERVISED SPOKEN DOCUMENT
SUMMARIZATION BASED ON STRUCTURED SVM

Here we first describe the supervised summarization algorithm used
in this paper. Given a spoken document d, the task is to select a
subset of utterances sd from d to form a summary, which can be for-
mulated as selecting sd maximizing the following objective function
F (sd) [29, 30].

F (sd) =
∑
xi∈sd

R(xi)− λ
∑

xi,xj∈sd

Sim(xi, xj) (1)

s.t.
∑
xi∈sd

L(xi) ≤ L̄,

whereR(xi) is the importance score of the utterance xi in the subset
sd, Sim(xi, xj) is the similarity between any two utterances xi and
xj , L(xi) is the length of utterance xi, and L̄ is the length constraint
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for the summary. The first term in the right hand side of F (sd)
rewards the subset sd including more important utterances, while
the second term penalizes the subset sd including utterances similar
to each other. The parameter λ in (1) is to properly weight these two
goals. While obtaining the exact solution for (1) is computationally
hard, some approximation algorithms exist [29].

We proposed a supervised spoken document summarization al-
gorithm using structured SVM [21]. R(xi) in (1) is expressed as a
linear function with a weight vector w to be learned,

R(xi) = w · h(xi), (2)

where h(xi) is a feature vector representing the utterance xi, which
will be further described in Section 3.1. With the availability of a
training set {(dn, rdn)}Nn=1, where N is the number of training ex-
amples, dn is the n-th training document, and rdn is the reference
summary for dn (which is an utterance subset of dn), we jointly
learn the weight vector w and the parameter λ which ensure that
for every training document dn the reference summary rdn is the
subset of dn which gives the highest objective function in (1), or
F (rdn) > F (sdn) for any other subset sdn of dn.

The above goal of jointly learning w and λ is accomplished by
solving the optimization problem below using structured SVM [31,
21]:

min
w,λ

1

2
(‖w‖2 + λ2) +

C

N

N∑
n=1

εn, (3)

s.t. ∀n,∀sdn , sdn 6= rdn :

F (rdn)− F (sdn) ≥ 1− εn, εn ≥ 0.

The constraints in (3) require that for each training document dn
the differences between the objective function of the reference sum-
mary rdn and any other possible subset sdn are larger than a margin,
which makes the algorithm more robust against various unknown
disturbances. Each constraint is padded with a per-document slack
variable εn whose sum over the training set is minimized. The norm
of the parameters to be learned and the scale of the slack variables
are traded off with a parameter C. Since F (sd) is a linear func-
tion of the parameters w and λ, the optimization problem in (3) is
a quadratic programming problem with global optimal solution ob-
tainable just as the ordinary SVM. By solving (3), we directly learn
w and λ which can be used in extracting summaries for all new doc-
uments d based on (1) and (2). In this way, all utterances in the sub-
set sd are considered jointly rather than individually, and the weight
parameter λ in (1) can be automatically learned as well [21]. The
optimization problem in (3) has a huge number of constraints, but
an approximate solution can be found in reasonable time with the
cutting plane algorithm by selecting a set of active constraints from
all the constraints [31].

3. UNSUPERVISED DOMAIN ADAPTATION FOR SPOKEN
DOCUMENT SUMMARIZATION

In the scenario of unsupervised domain adaptation for spoken doc-
ument summarization, there are a set of testing spoken documents
{du}Uu=1 to be summarized, and a training set {(dl, rdl)}

L
l=1, where

dl is the l-th training spoken document, and rdl is the human-
generated reference summary for dl.1 The training and testing
documents are from different domains.

1L and l indicate labeled, while U and u indicate unlabeled.

3.1. Feature Transformation Across Domains and Domain-
specific Features

For each utterance x, a D-dimensional feature vector f(x) includ-
ing such information as utterance’s length, position, similarity to
the whole document, prosodic features, and so on is extracted. The
feature components in f(x) should be the general characteristics of
utterances which can be extracted from documents in different do-
mains. Although f(x) can be directly taken as h(x) in (2) to learn
the parameters w and λ in (3) based on {(dl, rdl)}

L
l=1, this set of

parameters may not be suitable for summarizing the testing docu-
ments because the distributions of f(x) in training and testing do-
mains may be very different. To handle this problem, a D′ ×D di-
mension reduction transformation matrix W (D′ < D) is obtained
by principle component analysis (PCA) based on the feature vectors
f(x) for all the utterances x in the testing documents, andW is used
to reduce f(x) into a D′-dimensional feature vector f̄(x), where
f̄(x) = Wf(x). Therefore, the feature components in f(x) not
representative (or with small variances) in testing documents are ex-
cluded in f̄(x), and thus not involved in training when taking f̄(x)
as h(x).

Some utterance characteristics useful for summarization in the
testing documents may be undefined or without correspondents in
the training documents. For example, speaker role information is
useful to determine the importance of an utterance in document
genre like meetings [1], but such features can not be extracted from
some domains like course lectures offered by a single speaker. To
include this kind of features, f(x) or f̄(x) are expanded into f ′(x)
and f̄ ′(x):

f ′(x) =

[
f(x)
g(x)

]
, f̄ ′(x) =

[
f̄(x)
g(x)

]
,

where g(x) is a vector of features specific for the testing domain, and
set to zero vectors for utterances x in training documents dl. Either
f(x), f̄(x), f ′(x) and f̄ ′(x) can be taken as h(x) in (2).

3.2. Self-labeling

With h(x) defined above, the parametersw0 and λ0 are learned from
{(dl, rdl)}

L
l=1 based on (3), and then used in (1) to generate an initial

summary r0du for each testing document du. It is possible to use an
unsupervised summarization approach to generate r0du [20], but the
supervised method learns from the training set and generates better
r0du in general. Both {(dl, rdl)}

L
l=1 and {(du, r0du)}Uu=1 are then

taken as training examples to learn a new set of parameters w1 and
λ1, which are further used in (1) to generate summaries r1du for each
du. Then {(dl, rdl)}

L
l=1 and {(du, r1du)}Uu=1 are again used to learn

w2 and λ2. This process is continued iteratively. After I iterations,
the summary rIdu is taken as the output summary for each testing
document du.

Self-labeling is useful because of two reasons. First, although
the quality of extra training examples {(du, ridu)}Uu=1 cannot be as
good as {(dl, rdl)}

L
l=1 generated manually, {(du, ridu)}Uu=1 can be

helpful because they are exactly matched to the testing documents.
Second, when f ′(x) or f̄ ′(x) are taken as h(x) in (2), the compo-
nents in w corresponding to the domain-specific features g(x) can-
not be directly learned from {(dl, rdl)}

L
l=1 because g(x) are zero

vectors for all utterances x in dl. The weights for g(x) can be learned
only when {(du, ridu)}Uu=1 obtained for testing documents are taken
as training examples.
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4. EXPERIMENTS

4.1. Experimental Setup

4.1.1. Testing Spoken Documents - Course Lectures

The testing spoken documents used in the preliminary experiments
were from the course lectures offered at National Taiwan University
by a single speaker with a total length of 45 hours. The lectures
were Mandarin-English code-switching with Mandarin as the host
language but many technical terms uttered in the guest language of
English embedded in the Mandarin utterances. The corpus was seg-
mented into 193 documents based on the slides used, and the average
document length was about 17.5 minutes. One-best ASR transcrip-
tions were used for summarization, and the accuracies for the ASR
transcriptions were 88.0%.

Only 40 documents in the testing corpus were used for the ex-
periments here. The reference summaries for them were generated
by graduate students who had taken the course. Each document has
three reference summaries. The length constraint (in number of Chi-
nese characters plus English words in the manual transcriptions) is
10% of the documents. These reference summaries were used for
evaluating the machine-generated summaries only, not for training.

4.1.2. Training Spoken Documents - Broadcast News

The training set included 200 Mandarin broadcast news stories. The
average story length was about 29 seconds. One-best ASR transcrip-
tions were used for summarization as well, with character accuracy
of 81.7%. Each training spoken document has 3 reference sum-
maries generated by graduate students of National Taiwan Univer-
sity. A training document with 3 reference summaries was regarded
as 3 training examples.

4.2. General Features

Here we report the feature components of f(x) general for all do-
mains in Section 3.1.

4.2.1. Similarity with the whole document

The similarity measure between an utterance x and the whole doc-
ument d was defined as S(x, d) = 1

|d|
∑
x′∈d Sim(x, x′), where

Sim(x, x′) was the similarity measure between utterances x and
x′, and |d| the number of utterances in d. Sim(x, x′) was the co-
sine similarity between the vector representations v and v′ for x and
x′, where the vector representations could be either lexical-based or
topic-based.

For lexical-based similarity, each component of v corresponded
to a term in the lexicon, whose value was the term frequency in
the utterance weighted by the inverse document frequency for the
term. For topic-based similarity, we used Probability Latent Seman-
tic Analysis (PLSA) [32] with a set of latent topic variables {Tk, k =
1, 2, ...,K} to characterize the “term-utterance” co-occurrence rela-
tionships. PLSA training based on utterances yielded P (w|Tk), the
probability of observing the term w in an utterance given the topic
Tk, and P (Tk|x), the mixture weight of topic Tk given the tran-
scription of an utterance x. We trained two separate PLSA models
individually with the utterances in testing and training documents
rather than training a common model jointly because the training
and testing documents did not share any common topics. Now the
dimension of v was the number of latent topics K and the values
of the components in v were simply {P (Tk|x), k = 1, 2, ...,K}.

K = 16, 32, 64, 128 in the experiments below. Therefore, there
were a total of 5 feature components regarding the similarities with
the whole document.

To consider the context of an utterance, the same 5 components
for the previous and next utterances were taken as another 10 com-
ponents in f(x).

4.2.2. Prosodic features

It was well known that prosody is very helpful to spoken document
summarization [11, 33, 34]. We used 60 prosodic features for each
utterance, 27 features related to pause and syllable duration, 13 to
energy and 20 to pitch. The details are left out for space limitation.

4.2.3. Other features

There were other 4 feature components:

• Utterance length: Number of Chinese characters plus English
words in the utterance’s transcription.

• Normalized utterance position: i/N for the i-th utterance in
a document with N utterances.

• Significance scores:

– The sum of the significance scores I(w) for all terms
w in the utterance’s transcription. I(w) = tf(w) ×
idf(w), where tf(w) is the number of w in the whole
document, and idf(w) is the inverse document fre-
quency of w [35].

– The sum of another significance scores I ′(w) for all
terms w in the utterance’s transcription. I ′(w) =
tf(w)/LTE(w), where LTE(w) is the latent topic
entropy for w based on PLSA with K = 32 [36].

The above 4 feature components for the previous and next utter-
ances were also included in f(x).

4.3. Features Specific for Testing Documents

Here we present feature components of g(x) in Section 3.1 specific
for testing documents.

4.3.1. Key Term related Features

There were two sets of key terms specific for the course lectures
considered here:

• All English words were considered as key terms because most
of them were terminologies. This key term definition is spe-
cific for the code-switching lectures here.

• 205 key terms automatically extracted by the key term extrac-
tion approach proposed previously for course lectures [37].

Based on each key term definition, there were 3 feature compo-
nents for an utterance:

• The number of key terms in an utterance.

• Assume a key term occurring the first time in a document
gave more new information than the same key term appearing
latter. Hence, in an utterance the number of key terms occur-
ring first time in the document among the same key terms was
taken as a feature component.
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• Assume the position of a key term in an utterance also brought
some information, so the average positions of the key terms
occurring first time in the spoken document was also taken as
a feature component.

Since there were 2 key term definitions, there was a total of 6 features
related to key terms.

4.3.2. Latent Topic Distribution

The K probabilities {P (Tk|x), k = 1, 2, . . . ,K} obtained by
PLSA trained from testing spoken documents are taken as K com-
ponents for g(x), and K = 32 in the experiments reported below.
There were another PLSA model with the same number of latent
topics learned from the training documents, but the two PLSA mod-
els were learned individually with completely independent topics.
Therefore, the features mentioned above were considered as domain
specific.

4.4. Experimental Results

In the following experiments, ROUGE F-measures [38] were used to
evaluate the summarization results. The greedy algorithm [29] was
always used to optimize (1) when w in (2) and λ were given. The
lexical-based similarity in Section 4.2.1 was used for the similarity
Sim(xi, xj) in (1).

Fig. 1. ROUGE-1 F-measures for the initial summaries {r0du}
U
u=1

before self-labeling for the testing spoken documents using different
feature sets in Section 3.1.

.
Fig. 1 is the ROUGE-1 F-measures for the initial summaries

{r0du}
U
u=1 obtained before self-labeling with different feature sets

described in Sections 3.1 and 4.2. Bar (a) is for a trivial baseline, in
which the longest utterances were selected for the length constraint
L̄, while bar (b) is the MMR unsupervised approach. Bar (c) is for
the feature vector f(x) including the general feature components
described in Section 4.2 except the prosodic features, and bar (d) is
for all general feature components in Section 4.2 including prosodic
features. Bar (e) is for f̄(x) transformed from f(x) used for bar (d),
and D′ = 0.6D in Section 3.1. The results for f ′(x) and f̄ ′(x) are
not shown in Fig. 1. Since g(x) in the out-of-domain training ex-
amples were zero vectors, without self-labeling the results of f ′(x)
and f̄ ′(x) were exactly the same as f(x) and f̄(x) respectively. We
see from Fig. 1 that even though the training documents were out-of-
domain, the supervised learning methods (bars (c), (d) and (e)) still
yielded better results than the trivial baseline and MMR (bars (a) and
(b)). The prosodic features were helpful ((d) vs (c)), and the feature
transformation further improved the performance ((e) vs (d)).

Fig. 2. The results yielded by self-labeling with 0,1 and 2 train-
ing iterations and different feature sets for (I) ROUGE-1 and (II)
ROUGE-2.

Fig. 2 are the ROUGE-1 and -2 F-measures yielded by self-
labeling in Section 3.2 with different sets of features with 0, 1 and
2 iterations. Zero iteration means without self-labeling. Curve (a) is
the results yielded by f(x) in Section 3.1 with all general features
in Section 4.2. Curves (b), (c), and (d) are respectively for f ′(x)
with g(x) including the features related to key terms, latent topic
distribution, and both. Curve (e) is for transformed f̄ ′(x) for all gen-
eral features plus g(x) including all domain-specific features in Sec-
tion 4.3. Therefore, the two points for zero iterations for ROUGE-1
in Fig 2 (a) correspond to bars (d) and (e) in Fig. 1. We see that
some improvements were always achievable with self-labeling re-
gardless of the features used (iterations 1,2 vs 0) 2. Also, both the
feature sets related to key terms and topic distribution were helpful
((b), (c) vs (a)), and can be integrated ((d) vs (b),(c)), while feature
transformation yielded further improvements ((e) vs (d)).

5. CONCLUSION

In this paper, we investigate unsupervised domain adaptation for
spoken lecture summarization with the supervised summarization
method based on structured SVM. Encouraging results were ob-
tained with self-labeling, feature transformation and domain-specific
features when summarizing course lectures using training examples
in broadcast news. More different document domains and genres
will be explored in the future.

6. REFERENCES

[1] Yang Liu and Dilek Hakkani-Tur, Spoken Language Understanding -
Systems for Extracting Semantic Informaiont from speech, chapter 13,
pp. 357 – 396, Wiley, 2011.

[2] Shasha Xie and Yang Liu, “Using corpus and knowledge-based sim-
ilarity measure in maximum marginal relevance for meeting summa-
rization,” in ICASSP, 2008.

[3] Jaime Carbonell and Jade Goldstein, “The use of mmr, diversity-based
reranking for reordering documents and producing summaries,” in Pro-
ceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, 1998.

2The performance was saturated with more iterations in most cases.

8350



[4] Nikhil Garg, Benoit Favre, Korbinian Reidhammer, and Dilek Hakkani-
Tur, “ClusterRank: A graph based method for meeting summarization,”
in Interspeech, 2009.

[5] Hui Lin, J. Bilmes, and Shasha Xie, “Graph-based submodular selec-
tion for extractive summarization,” in ASRU, 2009.

[6] Yun-Nung Chen, Yu Huang, Ching-Feng Yeh, and Lin-Shan Lee, “Spo-
ken lecture summarization by random walk over a graph constructed
with automatically extracted key terms,” in Interspeech, 2011.

[7] Yun-Nung Chen and Florian Metze, “Integrating intra-speaker topic
modeling and temporal-based inter-speaker topic modeling in ran-
domwalk for improved multi-party meeting summarization,” in Inter-
speech, 2012.

[8] Jian Zhang, Ho Yin Chan, Pascale Fung, and Lu Cao, “A comparative
study on speech summarization of broadcast news and lecture speech,”
in Interspeech, 2007.

[9] Shih-Hsiang Lin, Berlin Chen, and Hsin-Min Wang, “A comparative
study of probabilistic ranking models for chinese spoken document
summarization,” ACM Transactions on Asian Language Information
Processing (TALIP), vol. 8, pp. 3:1–3:23, 2009.

[10] J.J. Zhang, R.H.Y. Chan, and P. Fung, “Extractive speech summariza-
tion using shallow rhetorical structure modeling,” Audio, Speech, and
Language Processing, IEEE Transactions on, vol. 18, pp. 1147 –1157,
2010.

[11] Shasha Xie, D. Hakkani-Tur, B. Favre, and Yang Liu, “Integrating
prosodic features in extractive meeting summarization,” in ASRU,
2009.

[12] Anne Hendrik Buist, Wessel Kraaij, and Stephan Raaijmakers, “Auto-
matic summarization of meeting data: A feasibility study,” in in Proc.
Meeting of Computational Linguistics in the Netherlands (CLIN), 2004.

[13] Sameer Maskey and Julia Hirschberg, “Comparing lexical, acous-
tic/prosodic, structural and discourse features for speech summariza-
tion,” in Interspeech, 2005.

[14] Jian Zhang and Pascale Fung, “Speech summarization without lexical
features for mandarin broadcast news,” in Proceedings of the Human
Language Technology Conference of the NAACL, 2007, pp. 213–216.

[15] Shih-Hsiang Lin, Berlin Chen, and Hsin-Min Wang, “A comparative
study of probabilistic ranking models for chinese spoken document
summarization,” ACM Transactions on Asian Language Information
Processing (TALIP), vol. 8, pp. 3:1–3:23, 2009.

[16] J.J. Zhang, R.H.Y. Chan, and P. Fung, “Extractive speech summariza-
tion by active learning,” in ASRU, 2009.

[17] Michel Galley, “A skip-chain conditional random field for ranking
meeting utterances by importance,” in Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Language Processing, 2006.

[18] Shasha Xie and Yang Liu, “Improving supervised learning for meeting
summarization using sampling and regression,” Computer Speech &
Language, vol. 24, pp. 495 – 514, 2010.

[19] Shih-Hsiang Lin, Yu-Mei Chang, Jia-Wen Liu, and B. Chen, “Lever-
aging evaluation metric-related training criteria for speech summariza-
tion,” in ICASSP, 2010.

[20] Shih-Hsiang Lin, Yueng-Tien Lo, Yao-Ming Yeh, and Berlin Chen,
“Hybrids of supervised and unsupervised models for extractive speech
summarization,” in Interspeech, 2009.

[21] Hung-Yi Lee, Yu-Yu Chou, Yow-Bang Wang, and Lin-Shan Lee, “Su-
pervised spoken document summarization jointly considering utterance
importance and redundancy by structured support vector machine,” in
Interspeech, 2012.

[22] Hitoshi Nishikawa, Toshiro Makino, and Yoshihiro Matsuo, “Domain
adaptation with augmented space method for multi-domain contact cen-
ter dialogue summarization,” in MLSLP, 2012.

[23] Shasha Xie, Hui Lin, and Yang Liu, “Semi-supervised extractive
speech summarization via co-training algorithm,” in Interspeech, 2010.

[24] Anna Margolis, A Literature Review of Domain Adaptation with Unla-
beled Data, 2011.

[25] Mukund Padmanabhan, George Saon, and Geoffrey Zweig, “Lattice-
based unsupervised mllr for speaker adaptation,” in ASR, 2000.

[26] R. Wallace, K. Thambiratnam, and F. Seide, “Unsupervised speaker
adaptation for telephone call transcription,” in ICASSP, 2009.

[27] Langzhou Chen, M.J.F. Gales, and K.K. Chin, “Constrained discrim-
inative mapping transforms for unsupervised speaker adaptation,” in
ICASSP, 2011.

[28] Oana Sandu, Giuseppe Carenini, Gabriel Murray, and Raymond Ng,
“Domain adaptation to summarize human conversations,” in Proceed-
ings of the 2010 Workshop on Domain Adaptation for Natural Lan-
guage Processing, 2010.

[29] Ryan McDonald, “A study of global inference algorithms in multi-
document summarization,” in Proceedings of the 29th European con-
ference on IR research, 2007.

[30] D. Gillick, K. Riedhammer, B. Favre, and D. Hakkani-Tur, “A global
optimization framework for meeting summarization,” in ICASSP, 2009.

[31] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and
Yasemin Altun, “Support vector machine learning for interdependent
and structured output spaces,” in ICML, 2004.

[32] Thomas Hofmann, “Probabilistic latent semantic analysis,” in UAI,
1999.

[33] Sameer Maskey and Julia Hirschberg, “Comparing lexical, acous-
tic/prosodic, structural and discourse features for speech summariza-
tion,” in Interspeech, 2005.

[34] Sameer Maskey and Julia Hirschberg, “Summarizing speech without
text using hidden markov models,” in Proceedings of the Human Lan-
guage Technology Conference of the NAACL, 2006.

[35] Sadaoki Furui, Tomonori Kikuchi, Yousuke Shinnaka, and Chiori Hori,
“Speech-to-text and speech-to-speech summarization of spontaneous
speech,” IEEE Trans. on Speech and Audio Processing, vol. 12, no. 4,
pp. 401–408, 2004.

[36] Sheng-Yi Kong and Lin-Shan Lee, “Semantic analysis and organization
of spoken documents based on parameters derived from latent topics,”
Audio, Speech, and Language Processing, IEEE Transactions on, vol.
19, pp. 1875 –1889, 2011.

[37] Yun-Nung Chen, Yu Huang, Hung-Yi Lee, and Lin-Shan Lee, “Un-
supervised two-stage keyword extraction from spoken documents by
topic coherence and support vector machine,” in ICASSP, 2012.

[38] Chin yew Lin, “Rouge: A package for automatic evaluation of sum-
maries,” in Workshop on Text Summarization Branches Out, 2004.

8351


