
HIERARCHICAL DISCRIMINATIVE MODEL
FOR SPOKEN LANGUAGE UNDERSTANDING

Jan Švec1, Luboš Šmı́dl2, Pavel Ircing1

1Department of Cybernetics, 2NTIS - New Technologies for Information Society
University of West Bohemia

Univerzitnı́ 22, Pilsen, Czech Republic
{honzas,smidl,ircing}@kky.zcu.cz

ABSTRACT

The paper presents a new discriminative model for statistical spoken
language understanding designed for use in spoken dialog systems.
The parsing algorithm uses lexicalized grammar derived from un-
aligned training data with probability estimates generated by multi-
class classifiers. The generated semantic trees are partially aligned
with the input sentence to provide lexical realisation of semantic
concepts. The model was evaluated on two semantically annotated
corpora and in both tasks it outperforms the baseline Hidden Vector
State parser and Semantic Tuple Classifiers model. The experiments
were performed using both transcribed data and recognized lattices.
The innovative aspect of using phoneme lattices in the understanding
process instead of word lattices is examined and described.

Index Terms— Automatic speech recognition, Dialogue sys-
tems, Spoken language understanding

1. INTRODUCTION

The spoken language understanding (SLU) module is a crucial com-
ponent of a dialog system. If the recognition and understanding per-
formance is poor, the whole dialog could consist of many misunder-
standings and the dialog system would be unusable. The statistical
based SLU systems were widely studied in the past decade. One
of the possible solutions is a lexicalized statistical parser introduced
in [1]. It is based on the lexicalized PCFG with rule probabilities
derived from aligned data. The new generative model – Hidden Vec-
tor State (HVS) parser – was introduced in [2]. It allows to train the
SLU from an unaligned semantic tree annotation. Although the class
of generated semantic trees of the original HVS parser is limited to
left-branching trees it could be extended to parse also a left-right-
branching trees [3]. The left-right-branching algorithm improves the
performance over the HVS parser [4]. Although the results seemed
to be promising, the overall performance of pipelined ASR and SLU
system was not ideal. The performance of HVS parser was outper-
formed on the ATIS task [5] by very simple discriminative model
called Semantic Tuple Classifiers (STC) which is based on a set of
binary SVM classifiers predicting parts of the output semantic tree
[6].

2. HIERARCHICAL DISCRIMINATIVE MODEL

The work described in this paper was motivated by the discriminative
model such as STC. Instead of using the output heuristics to recon-
struct the semantic tree, the described Hierarchical Discriminative
Model (HDM) uses a semantic grammar derived from training data

with expansion probabilities predicted by discriminative classifiers.
We use a terminology from artificial neural networks. The described
model can consist of two or three layers connected in a feed-forward
manner. Therefore we use the terms input, hidden, and output layer
(Fig. 1).

2.1. Output layer

The HDM output layer uses a semantic grammar similar to lexi-
calized probabilistic context-free grammars. The parsing algorithm
generates an unordered semantic tree which is only partially aligned
with the underlaying lexical representation of the user’s utterance.
The semantic grammar is parameterized by the utterance u and con-
sists of a tuple Gu = (Θ, Ru, S), where Θ is a set of semantic
concepts, Ru is a set of grammar rules dependent on the utterance
u and S ∈ Θ is a root concept (starting symbol of the parsing al-
gorithm). The rules Ru are in the form A → β [p], where A ∈ Θ,
β ⊆ {ν} ∪Θ, ν is a special symbol representing rules without lexi-
cal realisation in the utterance u (see below) and p is the probability
of concept A having a set of child nodes β:

p = P (A→ β|u) = P (β|A, u) (1)

The right-hand side of the rule A→ β [p] is an unordered set, there-
fore the generated semantic tree is unordered – there is no ordering
relation between the child nodes. There is also no distinction be-
tween terminal and non-terminal symbols, all symbols from Θ are
supposed to be non-terminals, i.e. any A ∈ Θ can occur on a left-
hand side of some rule. Due to missing terminal symbols, a corre-
spondence of semantic tree and the underlaying lexical representa-
tion is given by the rules of the form A → ∅ [p] or A → {ν} [p].
The first form represents the case in which the semantic concept A
has a lexical representation in the utterance u (with probability p).
On the other hand the concept expanded to {ν} does not have a lex-
ical representation in the utterance u and the symbol A is not part of
the semantic tree (with probability p).

Construction of the semantic grammar is relatively simple – first,
the non-parameterised set of rules R is generated from training data.
The set R contains expansions of each concept A seen during the
training phase. In addition the expansions A→ ∅ and A→ {ν} are
added into R for each A ∈ Θ. We will denote the set of all possible
expansion of the concept A as BA = {β : A → β ∈ R}. We
use a special starting symbol S0 to model the top-level concepts of
semantic trees. For each tree the symbol S0 is a parent of all top-
level concepts in an annotated tree. For example the semantic tree
TIME, TO(STATION) leads to the following set of rules R: S0 →
{TIME, TO}; TO→ STATION; TIME→ ∅ and STATION→ ∅.

8322978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

The probabilities P (A → β|u) are estimated using multiclass
discriminative models. In this work we used Support Vector Ma-
chines (SVM) with RBF kernel but arbitrary multiclass classifier
providing posterior estimates can be used. To obtain probability
distribution over the target classes the decision margin of an SVM
classifier is mapped to probability using approach described in [7].
To train the classifiers, the annotated semantic tree si has to be trans-
formed into a target classes tA(si) for each classifier predicting the
expansions of concept A. For each concept A in si the target class
is tA(si) = (A → β) if A has children β in the tree si. Other-
wise A is a leaf concept and tA(si) = (A → ∅). For concepts not
occurring in si we use tA(si) = (A→ {ν}). Then the output clas-
sifier for each A ∈ Θ is trained using input feature vector d(ui) and
target class tA(si). In the current implementation we use one SVM
multiclass classifier with RBF kernel for eachA ∈ Θ. Once the clas-
sifiers are trained it is possible to predict the posterior probabilities
P (tA|d(u)) = P (A→ β|u).

Given the parse tree π and the rule probabilities, we are able to
define the overall tree probability P (π|u) conditioned on the utter-
ance u as a product of probabilities of rules occurring in the tree:

P (π|u) =
∏

A→β∈π

P (A→ β|u) (2)

The goal of the parsing algorithm is to find the most probable
semantic tree corresponding to the utterance u. First the multiclass
classifier for each concept A ∈ Θ predicts the probability distribu-
tion over the corresponding sets BA. Then the set of generic rules
R is extended with probabilities P (A → β|u) to form the set Ru
and the semantic grammar Gu = (Θ, Ru, S0). The algorithm it-
eratively expands the nodes of the semantic tree starting with the
root symbol S0 and using the rules from Ru. The algorithm is a
standard best-first search (BFS) algorithm with the cost defined as
a negative logarithm of partial tree probability given by Eq. 2. We
represent the partial tree r as a list of applied rules. For each A
we will denote the number of times the concept A occurs on left-
hand side of all rules in r as LA(r). The number RA(r) denotes the
number of times A occurs on right-hand side of all rules in r. The
BFS algorithm stops if the best partial tree r matches the condition
LA(r) = RA(r) ∀A ∈ Θ and there is no rule of type A → {ν} in
r. The parsing algorithm also allows to find the n-th most probable
semantic tree simply by continuing the BFS after the first semantic
tree is found.

To avoid possibly infinite algorithm, the recursive rules contain-
ing the concept A in the set BA are not allowed. Even the indirect
recurrence is undesirable. This condition is not limiting in majority
of applications as discussed in Section 2.4.

The partial alignment of an utterance u and the semantic tree π
is done by determining the lexical representation of terminal nodes.
It is not necessary to find the lexical representation for every node in
the tree because in the spoken dialog system the presence of some
concept is sufficient – there is no need to know the exact lexical re-
alisation. An example of such concept from the HHTT corpus (Sec.
3) is DEP (departure) – the dialog manager only needs to know the
probability of occurrence of this concept in the tree, not the corre-
sponding realisation.

In the current implementation of HDM, the approach of sub-
stituting lexical classes with corresponding class labels is used [6].
The words that match the predefined list of lexical realisations are
replaced with the class labels and the correspondence between class
labels and leaf concepts is defined. For example the words “half past
nine” are replaced with a class label time and aligned with a concept
TIME. This approach allows the HDM to output semantic trees with-

out lexical realisation of some concepts – for example the semantic
tree can contain the concept STATION but this concept would not be
linked with any uttered word because the uttered sentence does not
contain the corresponding lexical class. This could occur in the case
the user uses an out-of-vocabulary word which is misrecognized by
an ASR but the output layer generates a tree with the STATION con-
cept based on the surrounding words. This information can be used
in the dialog strategy to inform an user and instruct him to reformu-
late the utterance.

2.2. Input layer

The input feature vector for each classifier can be formed from
lexical-syntactic features such as a frequency of word n-grams [6].
In this work we use rational kernels theory with the counting trans-
ducer to represent the input lattice with feature vector composed
from expected counts of n-grams n = 1, 2, . . . nmax [8, 9]. The
advantage of rational kernels is the direct computation of kernel
functionsK(ui, uj) between two utterances ui, uj represented with
weighted finite state transducers (WFSTs) without the need to ex-
plicitly represent the feature vector. In addition we use feature
space kernel normalization defined in [10] to normalize values of
kernels to an interval [0, 1]. The normalized values K(ui, uj) are
used directly in the SVM classifiers (see Eq. 3). In the hierarchical
discriminative model the part computing the kernel values is called
an input layer.

By using WFSTs to represent utterances we are able to train
an understanding model which takes into account the uncertainty of
ASR lattices. The HDM is not limited to use just word-lattices but
we can use arbitrary acyclic WFST such as word-strings (for 1-best
hypothesis) or phoneme lattices. The input layer was implemented
using the OpenFST library [11] which provides excellent computing
performance. On a laptop with Intel i7 2.4 GHz processor we were
able to compute the kernel function between one unseen phoneme
lattice and 5.4k training phoneme lattices on a single processor core
in approximately 20ms and for the word lattices in about 1.5 ms.

2.3. Hidden layer

Although the hierarchical discriminative model is able to process di-
rectly the input lattices represented by the kernel functions computed
in the input layer, our experiments showed that by using some input
preprocessing the understanding performance can be significantly
improved. The preprocessing is performed in a hidden layer. In the
current implementation we use the Semantic Tuple Classifiers (STC)
model [6] to reduce the input space from thousands of possible n-
grams into a much smaller set of semantic tuples. The STC uses
a set of binary classifiers trained to predict the presence or absence
of a semantic tuple. The semantic tuple is defined as subsequence
of path from the semantic tree root node to any other node, for ex-
ample the semantic tree DEP(TIME, TO(STATION)) contains fol-
lowing semantic tuples: DEP-TIME, DEP-TO, DEP-TO-STATION,
TO-STATION and four trivial tuples: DEP, TIME, TO, STATION.
The original approach by Mairesse et al. [6] used a heuristic to re-
construct the semantic tree from the set of predicted semantic tu-
ples. In case of using the STC as a hidden layer of HDM, the output
heuristic is replaced with the HDM parsing algorithm and the tree
reconstruction is based on a classifiers trained from annotated data.

The STC hidden layer uses exactly one classifier of each se-
mantic tuple t ∈ SN . The set SN consists of all semantic tuples
occurring in training set more than N -times. The hidden layer is
used to transform the input utterance u to a feature vector d(u) =
[dt(u)] t ∈ SN given the set of k training utterances {ui}ki=1. The

8323

DEP

DEP-TIME

TO-STATION

ARR

GREETING

d(u)

DEP

TIME

TO

STATION

{TIME} 0.20
{TIME, TO}0.75
∅ 0.05
{ } ν 0.08
∅ 0.92
{ } ν 0.12
{STATION} 0.56
∅ 0.32
{ } ν 0.29
∅ 0.71

TIME TO

DEP

STATION

 other t in S
N

0.12

0.29

0.08

-1.21

-0.9

d
t
(u)

lattice u

0.75

0.56

0.71

0.92

P(π|u) = 0.274

u
1

u
2

u
3

u
4

u
k

⋮

R
at

io
na

l k
er

ne
l w

[u
i

T
T

∘
∘

-1
u]

∘

lattice u

Input layer Hidden layer SVMs Output layer SVMs P(A→β|u) Most probable tree

Tr
ai

ni
ng

 la
tti

ce
s

K(u,u
i
)

Fig. 1: HDM schema. Output layer classifiers for the remaining concepts A ∈ Θ were omitted for clarity and the expansions were simplified.

value dt(u) is a distance to a decision boundary (i.e. decision func-
tion) of the SVM classifier corresponding to tuple t given the input
u:

dt(u) =

k∑
i=1

αt
iy

t
iK(u, ui) + bt (3)

where αt
i , b

t are parameters of SVM corresponding to a tuple t, yti
is +1 if the tuple t is present in the annotated semantic tree of utter-
ance ui, -1 otherwise and K(u, ui) is the kernel function between u
and ui computed by the input layer. Then the output layer is trained
from the feature vectors d(ui), i = 1, . . . , k and similarly the pre-
diction of semantic tree for an unseen utterance u is done first by
predicting d(u) and then by using the output layer SVMs to predict
the probability distributions P (A → β|u). The trained three layer
HDM contains |SN | binary SVM classifiers in the hidden layer (one
classifier for each semantic tuple) and |Θ| multiclass SVM classifier
in the output layer (one classifier for each semantic concept).

2.4. Algorithm limitations

In this section we will briefly discuss the limitations of the HDM
defined in the previous section. The first limitation arise from the
definition of semantic grammar rules – A → β where β is an un-
ordered set and also the generated semantic trees are unordered. This
does not limit the dialog manager in majority of domains because
the dialog strategy usually does not rely on the concept ordering.
This also implies that some node cannot have multiple direct chil-
dren with the same concept, e.g. semantic annotation DEP(TIME,
TO(STATION), TIME). To overcome this limitation we recommend
depending on the dialog manager implementation: (a) to modify the
semantic annotation to contain numbered concepts, eg. DEP(TIME-
1, TO(STATION), TIME-2), or (b) to unify the multiple concepts
into the annotation DEP(TIME, TO(STATION)) and then to assign
two lexical realisations of entity time to single concept TIME.

The second limitation comes from the parsing algorithm – the
semantic grammar is not allowed to generate semantic tree with a
node labeled with concept A and at the same time recursively con-
taining conceptA in a subtree ofA. This is not very limiting because
the utterances in common dialogs do not have recursive structure.
Therefore the recursive rules can be disallowed by the annotation
schema without the loss of generality.

The last limitation is imposed by the probabilities assigned to
the rules. Each occurrence of some rule from Ru shares the as-
signed probability with each other. For example in the semantic tree

DEP(FROM(STATION), TO(STATION)) the probability of STA-
TION→ ∅ (the probability of STATION being the leaf node of se-
mantic tree) is the same for both nodes containing the STATION con-
cept. Nevertheless the probabilities of subtrees FROM(STATION)
and TO(STATIONS) are generally different because the probabilities
of rules FROM→ STATION and TO→ STATION are different.

3. RESULTS

We used two semantically annotated corpora designed for spoken
language understanding in a spontaneous dialog. The first one was
the Human-Human Train-Timetable (HHTT) corpus [4] used in
our previous work on HVS parser [3, 12]. The corpus contains in-
quiries and answers about train connections. The second one was a
newly collected Czech Intelligent Telephone Assistant (TIA) corpus
containing utterances about meeting planning, corporate resource
sharing and conference call management. These corpora contain
unaligned semantic trees together with word-level transcriptions.
We have split the corpora into train, development and test data sets
(72:8:20) at the dialog level, so that the speakers do not overlap.

HHTT TIA
|Θ| (# different concepts) 28 24
|SN | 70 83
train sentences (concepts) 5240 (8849) 4337 (9027)
devel. sentences (concepts) 570 (989) 469 (1107)
test sentences (concepts) 1439 (2546) 1073 (2305)
ASR Vocabulary size 13886 2624
Word ASR Acc (OOV rate) 72.9% (7.5%) 63.0% (8.6%)
Phoneme ASR Acc 74.3% 67.5%

Table 1: Corpora characteristics.

To evaluate the SLU performance we used the concept accuracy
measure defined as cAcc = H−S−D−I

N
where H is the number of

correctly recognized concepts, N is the number of concepts in ref-
erence and S, D, I are the numbers of substitutions, deletions and
insertions [3]. The reference and hypothesis tree were aligned using
algorithm described in [13]. Since the corpora do not contain any
tree alignment only the parsed concepts and structure of semantic
tree were evaluated. We used our in-house LVCSR decoder to ob-
tain the word and phoneme lattices [14]. The word language model
used to recognize HHTT data was trigram class-based LM while the
TIA data was recognized using simple trigram LM. To obtain the

8324

HHTT cAcc[%] TIA cAcc[%]

Model trans 1best latt trans 1best latt
HVS 74.9 64.5 – – – –
STC 76.0 66.7 67.9 74.7 65.8 65.6
HDM-2 78.0 67.0 68.3 78.4 70.3 69.4
HDM-3 80.5 70.4 72.8 80.9 72.7 73.9

Table 2: Results for different word-level models.

HHTT cAcc[%] TIA cAcc[%]

Model ph-ad ph map ph-ad ph map
STC 58.9 62.7 69.5 61.6 65.2 69.8
HDM-2 61.6 63.2 70.7 64.5 67.6 73.0
HDM-3 67.1 69.2 74.8 69.1 70.9 75.3

Table 3: Results for different phoneme-level models.

phoneme lattices the 5-gram phoneme language model was used.
The recognition accuracy and other characteristics of both corpora
are summarized in Tab. 1.

We performed a number of experiments to compare the perfor-
mance of baseline HVS and STC models and the described HDM.
We used two variants of HDM - two-layer structure with the hid-
den layer omitted (HDM-2) and three-layer with STC as a hidden
layer (HDM-3). The models were trained without any lexical class
detection in the input layer – this fact negatively influenced mainly
the STC model where the lexical classes are beneficial. We decided
not use lexical classes because then we are able to directly com-
pare the HVS, STC and both word-based and phoneme based HDM.
In the word-level experiments we used n-gram rational kernel with
nmax = 3, for the phoneme-level experiments we used nmax = 5.
The parameter N of the set of semantic tuples SN was set to 30.
These parameters were tuned to optimize the performance on the de-
velopment data. No contextual information (eg. previous utterances,
semantics, dialogue state) were used.

The first set of experiments was performed using word-level
transcriptions (Tab. 2, trans). The baseline models were HVS and
STC models. Both the two-layer and three-layer hierarchical models
outperformed the baseline while the HDM-3 performed better then
the HDM-2. Then second set of word-level experiments was per-
formed using ASR outputs (Tab. 2). First we used the word recog-
nizer and we evaluated the increase of concept accuracy while pars-
ing the one-best ASR hypothesis (1best) and the word lattice (latt).
In the HHTT task, the increase was consistently about 1% absolutely
for STC and HDM-2 while in the TIA task there was no difference
between one-best a n-best results. The slightly bigger difference was
encountered for the HDM-3 model.

Then we focused on a new approach to speech understanding –
SLU from subword units, especially from phonemes. By using the
input layer we are able to quickly evaluate the kernel between the
unseen phoneme lattice and the training set. The use of phonemes
has a number of advantages – first it is not necessary to train and
tune the word-level language model (LM). The phoneme LM can be
easily adapted from a generic one because in a given language there
is only a limited number of phonemes. Therefore we can use the
generic phoneme LM to recognize the unannotated training data and
then train the adapted phoneme LM from the recognized sequence of
phonemes. The second advantage is that the phoneme-level n-gram
rational kernel substitutes lemmatization or stemming of input be-
cause the kernel matches also substrings of words. To demonstrate
this we included the results on phoneme lattices. First we used the
phoneme LM trained directly from the forced-alignments of tran-
scribed training data (Tab. 3 ph). The second set of experiments was
generated using an adapted phoneme LM (Tab. 3, ph-ad). There
is a stable tolerable decline of 2% of cAcc by using the adapted
phoneme LM. We also performed an experiment with the word lat-
tices mapped into phonemes according to the pronunciation dictio-
nary (Tab. 3, map). In this case the performance increased by 5% of
cAcc and outperformed the word-level HDM results.

4. CONCLUSION AND FUTURE WORK

The HDM with hidden layer outperforms both baseline models and
also the two-layer HDM. The transformation using the hidden layer
allows to better parameterize the utterance and the prediction of
output layer incorporate the knowledge about all semantic concepts
(more precisely about all semantic tuples from SN). This allows to
easily detect the out-of-topic (OOT) utterances, for example the TIA
test set contain 210 OOT utterance and the OOT concept is detected
with precision 68.2% and recall 75.7% (F=71.8%, ASR word-level
lattices). The results for word-level ASR system do not show any
significant difference between the 1-best and full lattice HDM re-
sults. This could be caused by a low-quality posterior probabilities
from an ASR system. In the future we plan to experiment with more
sophisticated methods for generating ASR lattices, such as [15].

The results obtained for phoneme-level HDM are comparable
to word-level HDM. The results for lattices obtained by using an
adapted phoneme-level LM suggest that the SLU model can be de-
veloped very quickly without the need to collect and transcribe a
large number of sentences to train a robust word-level LM. On the
the other hand, if the word-level LM is available the mapping of
word lattices to phonemes can significantly improve the understand-
ing performance. In the future research, we would like to devote to
the lexical classes detection in phoneme-lattices and use the infor-
mation about their occurrences to support the decisions in the output
layer. Our preliminary experiments showed that by adding the scores
of lexical classes into a feature vector d(u), we are able to mitigate
the difference between an adopted and trained phoneme LM.

The HDM is able to process a wide range of different inputs
starting with word strings and continuing with word and phoneme
lattices. The results also showed that the SLU from phonemes is
possible and we are able to simplify the SLU process by eliminating
the word-level LM, which is expensive to obtain, hard to adapt and
limited in the sense of its lexicon. The results obtained using word
lattices mapped to phonemes are very promising. In the future re-
search, we want to focus also on the fusion of phoneme recognizer
(which is able to handle OOV words and non-standard pronuncia-
tions) with word recognizer (able to model longer inter-word depen-
dencies). Summarizing the parsing performance on recognized data
the HDM was able to increase the concept accuracy on the HHTT
task from 66.7% to 74.8% and on the TIA task from 65.8% to 75.3%
in comparison with the STC model. In addition the HDM is able to
detect out-of-topic sentences and to use phoneme-level information
in the parsing process.

5. ACKNOWLEDGEMENT

This research was supported by the Technology Agency of the
Czech Republic, project No. TE01020197 and by the European
Regional Development Fund (ERDF), project “New Technologies
for Information Society” (NTIS), European Centre of Excellence,
ED1.1.00/02.0090.

8325

6. REFERENCES

[1] Eugene Charniak, “Immediate-Head Parsing for Language
Models,” in Proceedings of the 39th Annual Meeting on Asso-
ciation for Computational Linguistics, Toulouse, France, 2001,
number 3, pp. 124–131, ACM.

[2] Yulan He and Steve Young, “Hidden vector state model for
hierarchical semantic parsing,” Proceedings of IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Process-
ing, 2003.1, vol. 1, pp. 268–271, 2003.

[3] Filip Jurčı́ček, Jan Švec, and Luděk Müller, “Extension of
HVS semantic parser by allowing left-right branching,” in
IEEE International Conference on Acoustics Speed and Signal
Processing, 2008, number 1, pp. 4993–4996.

[4] Filip Jurčı́ček, Jiřı́ Zahradil, and Libor Jelı́nek, “A human-
human train timetable dialogue corpus,” Proceedings of EU-
ROSPEECH, Lisboa, pp. 1525–1528, 2005.

[5] Deborah A. Dah, Madeleine Bates, Michael Brown, William
Fisher, Kate Hunicke-Smith, David Pallett, Christine Pao,
Alexander Rudnicky, and Elizabeth Shriber, “Expanding the
scope of the ATIS task: The ATIS-3 corpus,” in Proceedings of
the workshop on Human Language Technology, Stroudsburg,
1994, pp. 43–48.

[6] François Mairesse, Milica Gašić, Filip Jurčı́ček, Simon Keizer,
Blaise Thomson, Kai Yu, and Steve Young, “Spoken lan-
guage understanding from unaligned data using discriminative
classification models,” in IEEE International Conference on
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009.,
Taipei, 2009, pp. 4749–4752, IEEE.

[7] Ting-Fan Wu, Chih-jen Lin, and Ruby C. Weng, “Probability
estimates for multi-class classification by pairwise coupling,”
The Journal of Machine Learning Research, vol. 5, pp. 975–
1005, 2004.

[8] Corinna Cortes, Patrick Haffner, and Mehryar Mohri, “Ratio-
nal kernels: Theory and algorithms,” The Journal of Machine
Learning, vol. 5, pp. 1035–1062, 2004.

[9] Jan Švec and Pavel Ircing, “Efficient algorithm for rational
kernel evaluation in large lattice sets,” in IEEE International
Conference on Acoustics Speech and Signal Processing, Van-
couver, Canada, 2013, IEEE.

[10] Arnulf B.A. Graf, Alexander J. Smola, and Silvio Borer, “Clas-
sification in a normalized feature space using support vector
machines.,” IEEE Transactions on Neural Networks, vol. 14,
no. 3, pp. 597–605, Jan. 2003.

[11] Cyril Allauzen, Michael Riley, and Johan Schalkwyk, “Open-
Fst: A general and efficient weighted finite-state transducer
library,” Implementation and Application of Automata, vol.
4783, pp. 11–23, 2007.

[12] Jan Švec and Filip Jurčı́ček, “Extended Hidden Vector State
Parser,” Text, Speech and Dialogue, vol. 5729, pp. 403–410,
2009.

[13] Kaizhong Zhang, “A Constrained Edit Distance Between Un-
ordered Labeled Trees,” Algorithmica, vol. 15, no. 3, pp. 205–
222, 1996.

[14] Aleš Pražák, Josef V. Psutka, Jan Hoidekr, Jakub Kanis, Luděk
Müller, and Josef Psutka, “Automatic online subtitling of the
Czech parliament meetings,” Text, Speech and Dialogue, vol.
4188, no. 1, pp. 501–508, 2006.

[15] Daniel Povey, Mirko Hannemann, Gilles Boulianne, Lukáš
Burget, Arnab Ghoshal, Miloš Janda, Martin Karafiát, Stefan
Kombrink, Petr Motlı́ček, Yanmin Qian, Korbinian Riedham-
mer, Karel Veselý, and Ngoc Thang Vu, “Generating exact
lattices in the WFST framework,” in IEEE International Con-
ference on Acoustics Speech and Signal Processing, Kyoto,
Japan, 2012, vol. 213850, pp. 4213–4216, IEEE.

8326

