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ABSTRACT

Previous work on dialogue act classification have primarily focused
on dense generative and discriminative models. However, since the
automatic speech recognition (ASR) outputs are often noisy, dense
models might generate biased estimates and overfit to the training
data. In this paper, we study sparse modeling approaches to im-
prove dialogue act classification, since the sparse models maintain
a compact feature space, which is robust to noise. To test this, we
investigate various element-wise frequentist shrinkage models such
as lasso, ridge, and elastic net, as well as structured sparsity models
and a hierarchical sparsity model that embed the dependency struc-
ture and interaction among local features. In our experiments on a
real-world dataset, when augmenting N -best word and phone level
ASR hypotheses with confusion network features, our best sparse
log-linear model obtains a relative improvement of 19.7% over a
rule-based baseline, a 3.7% significant improvement over a tradi-
tional non-sparse log-linear model, and outperforms a state-of-the-
art SVM model by 2.2%.

Index Terms— Dialogue act classification, sparsity, log-linear
model, maximum entropy, discriminative model.

1. INTRODUCTION

Dialogue act classification is a challenging step in the natural lan-
guage understanding component of modern spoken dialogue sys-
tems [1]. The challenge arises on the basis of noisy interpretation
of speech signals from the front-end ASR [2]. When a dialogue act
classification module parses the user’s utterance into an intention, it
is known that the ASR errors might cause difficulties for the classi-
fier, which degrades the overall performance of the entire system.

To mitigate the above problem, direct optimization of the rec-
ognizer requires significant amount of the training data, and tuning
of huge amount of the ASR parameters. In addition, this approach
might still prone to errors, since standard acoustic features such as
MFCC, do not generalize well across speakers [3]. Instead, dialogue
researchers have focused on building statistical dialogue act classi-
fiers with noise-robust features. Earlier approaches have focused on
using phonetic representations [4, 5]. Recently, methods that com-
bine phonetic, word, and semantic representations [6, 7] have been
shown to be useful. Besides using features of different granularities,
the approach that allows models to select N -best ASR outputs has
also been empirically studied [8, 9, 10]. In addition to lexical fea-
tures, prosodic and syntactic features [11, 12, 13, 14] have also been
studied.

Although obtaining rich learning representations is crucial,
building robust statistical models are also of paramount significance
at the other end of the spectrum. Early approaches start with using

the language models [15, 16], and also include the use of genera-
tive models such as the source-channel model [17], hidden Markov
models (HMM) [18, 19, 20], and the hidden vector state model [21].
Even though discriminative models do not model the joint distribu-
tion of features and labels, it is known that they often outperform
generative models in classification tasks, since they relax the inde-
pendence assumption, and enable arbitrary features to be included in
the model. For instance, conditional random fields (CRF) [22, 23],
support vector machine (SVM) [12, 24, 25], maximum entropy (lo-
gistic regression) [10, 13, 16, 26], and boosting [16, 27, 28] have
shown to be effective in this task. It is noted in several studies that
in order to control the model complexity, differentiating informative
and noisy features in the learning framework is a crucial step.

Recently, sparsity modeling techniques have been shown to be
very powerful to learn compact feature sets in various NLP classifi-
cation tasks [29, 30, 31]. To automatically learn a smaller but infor-
mative feature space, sparse models use sparsity inducing priors in
generative models or L1 regularizers in the discriminative learning
framework. The nature of these priors and regularizers will drive the
large weights of noisy features that make models tend to overfit the
training data into zeros, so ideally, only consistent and informative
features will have non-zero weights. In this paper, the basic motiva-
tions of using sparser models is that since ASR outputs are noisy and
typically have high-dimensional feature space, dense models might
be less robust to noise and could overfit to multiple effects from the
training data (e.g. a fixed set of training speakers, channel effects,
or domain effects). Thus, sparse models that automatically perform
feature and model selection, could potentially improve the perfor-
mance of the dialogue act classifier. Specifically, we classify user
utterances into multiple dialogue acts using 1-best and N -best ASR
hypotheses. First, we investigate a lasso model [32], which incor-
porates a frequentist-style shrinkage that induces element-wise spar-
sity in the classifiers. To compare with lasso, a quadratic penalty
non-sparse ridge estimator [33] is evaluated. Secondly, we study a
composite penalty elastic net model [34] that jointly balances the
sparsity from lasso and the smoothness property from the quadratic
penalty. To take into account the structure of the feature space and
model the dependency of local features in the multi-class dialogue
act classification problem, we propose a group lasso method and a
L1,∞ penalty model that capture the structured sparsity. Finally, a
hierarchical sparsity model is proposed to combine the element-wise
sparsity with structured sparsity. In the evaluation section, we show
that our sparse models significantly outperform a rule-based base-
line, non-sparse log-linear model baselines, as well as state-of-the-
art SVM discriminative models.

Section 2 introduces the materials. Our proposed sparse models
are described in Section 3. The empirical results are presented in the
Section 4. Section 5 concludes and discusses future work.
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Table 1. Distribution of dialogue acts in training and testing sets
Set inform request bye null affirm hello negate reqalts confirm thankyou others

Training 45.85% 20.63% 12.41% 8.95% 4.17% 2.56% 1.01% 1.52% 0.79% 0.87% 1.23%
Testing 43.57% 25.13% 13.72% 5.59% 3.48% 3.56% 1.02% 1.13% 0.92% 0.84% 1.02%

2. THE MATERIALS

We use a spoken language understanding corpus provided by Cam-
bridge University [25]. The domain is about restaurant recommen-
dation in Cambridge. We describe the corpus, the dialogue acts, and
the feature sets below.

2.1. The corpus
The subjects of the corpus were asked to speak to multiple spoken di-
alogue systems for a number of dialogues in an in-car setting. There
are multiple recording conditions: 1) a stopped car with the air con-
dition control on and off 2) a driving condition 3) and in a car sim-
ulator. The distribution of each condition in this corpus is uniform.
ASR was used to transcribe the speech into text, and the word error
rate was reported as 37%. The vocabulary size is 1868. We use the
same training and testing data as [25], shown in Table 2.

Table 2. Corpora description.
Training Testing

Dialogues 1522 644
Utterances 10571 4882

Male:Female 28:31 15:15
Native:Non-Native 33:26 21:9

2.2. The dialogue acts
In this corpus, each utterance has been annotated with a dialogue
act, which describes the user’s intent. There are total 17 different
dialogue acts in this corpus, which are described in [35]. The distri-
bution of 17 dialogue acts is shown in Table 1.

2.3. Feature Sets

For each utterance, we extract five different feature sets, which are
shown in Table 3. With top-N ASR hypotheses for each utterance,
we compute word and phone n-gram frequency to form a vector for
training (W1, WN , P1, and PN ). Here phonetic features are based
on CMU Pronouncing Dictionary. Note that the order of top-N hy-
potheses is the same in WN and PN . We denote the features from
word confusion networks and dialogue context features as CNet.
Here the confusion networks feature set is the expected frequency of
all n-grams in the ASR lattice of the utterance [36], and the last dia-
logue system act is included as the dialogue context features. CNet
is attached in the same dataset that Henderson et al. [25] used.

Table 3. Feature sets and their descriptions (n = [1...3], N = 10).
Name Description
W1 word n-gram freq. from 1-best hypothesis
WN word n-gram freq. from N -best hypotheses
P1 phone n-gram freq. from 1-best hypothesis
PN phone n-gram freq. from N -best hypotheses

CNet word confusion networks with context features

3. LOG-LINEAR MODELS

3.1. Multinomial Logistic Regression (MLR)

In the task of mapping an utterance into many possible dialogue acts,
we formulate this problem as a multiclass classification task. To do

this, we draw the output dialogue act label ŷ ∼ Mult(θ̂), where the
multinomial distribution is parameterized by θ. Assume there are K
instances in total and M classes of dialogue acts, we first introduce
the softmax function for the standard multinomial logistic regression
model:

θ̂im =
exp(Zmi)∑M

m=1 exp(Zmi)
, (1)

Zmi = cm +

D∑
d=1

βmdXid, (2)

where cm is the offset of the log-linear model, D is the dimension
of the feature space, and Xid is the d-th feature of instance i. The
term βmd puts a weight on feature Xd for predicting the class d
label of the utterance, and our estimation problem is now to set these
weights. The log-likelihood is:

`(θ) =

K∑
i=1

M∑
m=1

yim log θim, (3)

so using the standard maximum likelihood estimation approach, the
parameters βmd can be set by the gradient ascent approach.

3.2. Element-Wise Sparsity via Lasso, Ridge, and Elastic Net

To control the overall complexity, we apply regularized models on
the weight of βmd. A sparsity-inducing model, such as the lasso [32]
or elastic net [34] model, will drive many of these weights to zero,
revealing important interactions between the dialogue act labels and
other features. Instead of maximizing the log-likelihood, we can
minimize the following lasso model that consists of the negative log-
likelihood loss function as well as a L1-norm:

min
(
− `(θ) +

M∑
m=1

D∑
d=1

λ(1)
m ||βmd||

)
. (4)

Since the lasso penalty can introduce discontinuities to the origi-
nal convex function, we can also consider an alternative non-sparse
ridge estimator [33] that puts a quadratic penalty, which maintains
the convex property:

min
(
− `(θ) +

M∑
m=1

D∑
d=1

λ(2)
m ||βmd||2

)
. (5)

In addition to the lasso and ridge estimators, the composite penalty
based elastic net model [34] balances the sparsity and smoothness
properties of both the lasso and ridge estimators:

min
(
− `(θ) +

M∑
m=1

D∑
d=1

λ(1)
m ||βmd||+

M∑
m=1

D∑
d=1

λ(2)
m ||βmd||2

)
.

(6)

3.3. Structured Sparsity via Group Lasso and L1,∞

Structured sparsity models, which are different from element-wise
sparse models, benefit primarily from modeling the dependency and
interaction of groups1 of local features, especially in multi-class out-
put prediction problems. Since we are dealing with the features ex-
tracted from different sources, it is also possible to take into account

1Here, “group” means different sets of features (e.g. phone n-grams,
word n-grams, and dialogue context features form three different groups.)
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Table 4. Multi-class classification accuracy of testing set using different feature sets. (%)
Feature Set W1 WN P1 PN WN + PN CNet WN + PN + CNet

Feature Dimension 8,213 39,458 5,607 9,805 49,263 98,148 147,411
Majority 43.57

MLR 72.04 76.26 68.66 75.73 77.35 80.25 81.46
Lasso 74.46* 80.15* 74.15* 80.23* 80.46* 84.10* 84.29*
Ridge 74.42* 80.42* 73.90* 80.58* 80.75* 83.31* 84.23*

Elastic Net 74.54* 80.52* 74.81* 80.32* 80.58* 83.84* 84.54*
Max Improvement +2.50 +4.26 +6.15 +4.85 +3.40 +3.90 +3.08

the group-wise sparsity using a group lasso approach [37]:

min
(
− `(θ) +

M∑
m=1

G∑
g=1

λm||βgm||
)
. (7)

An alternative method for introducing structured sparsity is using
the L1,∞-norm [38], where the same feature d across all βm groups
can be driven to zero, which reveals the important features across
different output classes:

min
(
− `(θ) +

M∑
m=1

max
d

λ(1)
m ||βmd||

)
. (8)

3.4. Hierarchical Sparsity via Sparse Group Lasso

Finally, to induce different hierarchies of sparsity in the feature
space, we introduce the sparse group lasso model [39] that combines
the element-wise and the group-wise lasso:

min
(
− `(θ) +

M∑
m=1

G∑
g=1

λm||βgm||+
M∑

m=1

D∑
d=1

λ(1)
m ||βmd||

)
(9)

Our log-linear model is quite flexible; by comparing various restric-
tions, we can test different features for this classification task. We
use the L-BFGS implementation in L1General2 for the numerical
optimization.

4. EMPIRICAL EVALUATION

We first investigate the contribution of different feature sets. Then,
we compare sparse and non-sparse models in this task. In addi-
tion, by varying the level of sparsity, we show how the performance
correlates with the complexity of the models. Next, a comparison
of element-wise, structured, and hierarchical sparse models are de-
scribed. Finally, we compare our best sparse model to a rule-based
model, a multinomial logistic regression (MLR) model, and a state-
of-the-art SVM model. The error analysis is followed. For all exper-
iments, we conduct 3-fold cross-validation on the training set to tune
the model parameters, and evaluate the accuracy on the test data. The
paired t-test is used to test the significance.

4.1. Comparing Feature Sets
4.1.1. 1-Best and N -Best Hypotheses
We use the 1-best and N -best hypotheses from ASR, where N was
set to 10 for all experiments. The dimensions of feature spaces and
total numbers of n-grams are shown in Table 4. For non-sparse
MLR, Table 4 shows that using top-N hypotheses were significantly
better than the ones using the top-1 list by large margins for both
word and phone n-gram features. It is clear that while the ASR word

2http://www.di.ens.fr/˜mschmidt/Software/
L1General.html

error rate is high, using more hypotheses supplies more ASR infor-
mation to the dialogue act classifier, and thus improves the overall
performance.

Interestingly, although W1 and P1 both contain features from
only one short utterance, sparse models are still able to remove the
noisy features to improve the performance significantly. Here we see
that the improvement of sparse models over MLR with WN is greater
than with W1, because using N -best hypotheses allows the sparse
models to make use of more information. On the other hand, even
though the phone n-gram feature set is denser than word n-gram,
we are able to observe good results after applying sparse models for
both 1-best and N -best hypotheses.

4.1.2. Word N -Gram and Phone N -Gram
In Table 4, it is shown that word n-gram result of the MLR model is
slightly better than phone n-gram for both 1-best and N -best lists,
where n = [1...3]. Note that using N -best lists largely increases
the dimension of word n-gram feature space, whereas the dimension
of phone n-gram has only grown from 5,607 to 9,805. This reveals
PN has a denser feature space. However, when using our sparse log-
linear models, both WN and PN features have obtained significant
improvements over MLR baseline, which demonstrates the robust-
ness of our sparse models to filter noisy features in the settings with
distinct dimentionalities. Considering these two types of feature sets
might be additive, by combining WN and PN , Table 4 shows that
using both feature sets results in better performance than using them
separately.

4.1.3. Combining N -Gram and Confusion Networks
CNet includes the features from the lattice of all hypotheses gener-
ated by a speech recognizer and dialogue context features [25, 36],
which performs better than all n-gram feature sets. Combining WN ,
PN , and CNet further improves the performance, probably because
phone n-grams provide additional information that CNet does not
contain. In addition, non-sparse standard MLR using combined fea-
ture sets achieves a classification accuracy of 81.46%, whereas the
best sparse model further improves the performance to 84.54%. The
selected feature size is approximately 1% of original size.

4.2. Comparing MLR, Lasso, Ridge, and Elastic Net
For the lasso model and the elastic net model, higher λ results in a
sparser feature space, and we set λ1 = λ2 in the elastic net model
to balance the same level of sparsity and smoothness. Models that
are significantly better (P < 0.05) than the baseline are marked
with asterisks in Table 4. We find that introducing penalty for larger
weights in the standard MLR model has significant gains of 2%-
6%. The elastic net model balances the sparsity and smoothness and
performs the best for most of the experimental settings.

4.3. Impacts of Different Levels of Sparsity
Regularization parameters λ control the sparsity of the lasso and
elastic net models. By showing the 3-fold cross-validation accura-
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cies with different regularization parameters in Figure 1, we can see
how the level of sparsity influences the performance. We find the
performance from three models become better when increasing λ,
clearly showing that penalizing features with large weights is useful.
The accuracies for lasso model and elastic net model increase faster
than ridge, because they encourage sparsity in the feature space and
directly remove noisy features. Overall, they obtain better results
than the ridge estimator. The elastic net model performs best and
reaches the highest accuracy when smaller regularization parame-
ters, since it balances sparsity and smoothness properly.
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Fig. 1. Impacts of different levels of sparsity on 3-fold cross-
validation accuracy of the training set.

4.4. Comparing Element-Wise, Structured, and Hierarchical
Sparse Models
We compare element-wise, structured, and hierarchical sparse mod-
els for this task in Table 5. Here we use WN + PN + CNet and label
these three feature sets as different groups to train group-wise sparse
models. We find that group lasso doesn’t improve the performance,
probably because we have not performed the exhaustive search to
tune the parameters λm for different groups, since currently there
might not exist efficient searching algorithms for tuning large num-
ber of group regularization parameters. Interestingly, the structured
sparsity model using L1,∞ provides better result, revealing the im-
portance of modeling sparsity structures. The hierarchical sparsity
model that incorporates lasso and group lasso doesn’t give signifi-
cant improvement, and possibly because this method has double L1

penalties, which hurts the performance when the model is too sparse.

Table 5. Classification accuracy of testing set using element-wise,
structured, and hierarchical sparse models.

Model Accuracy (%)
Element-wise Lasso 84.29

Structured Group Lasso 83.39
L1,∞ 84.41

Hierarchical Sparse Group Lasso 83.35

4.5. Comparing to Rule-based and Discriminative Models
We compare our sparse models to Phoenix, which is the baseline
that uses hand-crafted grammars [40], and SVM, which uses a linear
kernel and sigmoid function to estimate the posterior probability for
each class [41, 25]. Using the same feature set (CNet), our sparse
MLR model significantly outperforms the linear kernel SVM model.
Our proposed sparse model trained on the combined feature sets ob-
tains the best performance.

4.6. Error Analysis and Discussion
We perform an error analysis to understand where and why our mod-
els made mistakes. We show the accuracy for the six most frequent

Table 6. Classification accuracy using proposed models and other
models. Results are written as µ± 1.96σ, where µ is the estimate of
mean over the utterances in the test set and σ is the standard error.

Model Feature Accuracy (%)
Phoenix manual grammar 70.6 ± 1.28

SVM
CNet

81.7 ± 1.08
MLR 80.3 ± 1.12

Best Sparse MLR 84.1 ± 1.03
SVM

WN + PN + CNet
82.7 ± 1.06

MLR 81.5 ± 1.09
Best Sparse MLR 84.5 ± 1.02

classes (occurrence > 3% in the test set) in Table 7. We find that the
“null” and “hello” classes are difficult to classify, and here we show
some examples of these dialogue acts:

• null: “uh”, “please”
• hello: “hi i’m looking for a chinese restaurant please”, “hello

i want italian restaurant in the south with moderate price”

Since “null” contains only very few words in an utterance and these
words can also occur in other more frequent dialogue acts, estimat-
ing the parameters of these words in the classifier might be difficult.
We might need the utterance length as a feature to capture this nu-
ance. Also, the dialogue act “hello” hinges on the opening words in
the utterance, but the rest of the words may confuse the classifier.
This suggests that we might need to use the initial word as a feature
in the future. Nevertheless, sparse models can still slightly improve
the performance of these classes compared to non-sparse models.

Table 7. Classification accuracy for the six most frequent classes.
Class Ratio MLR Lasso Ridge Elastic Net

inform 43.57% 88.11 92.81 92.38 93.14
request 25.13% 88.26 89.49 90.30 89.98

bye 13.72% 90.30 93.88 92.09 93.58
null 5.59% 49.08 49.45 50.92 49.45
hello 3.56% 35.63 36.78 38.51 37.36
affirm 3.48% 79.41 82.35 80.59 81.76

5. CONLUSION AND FUTURE WORK

Sparse log-linear models improve dialogue act classification: we
have observed absolute improvements over several baselines and
a state-of-the-art SVM model are from 2.2% to 19.7%, and these
improvements are robust across different feature and parameter set-
tings. We find sparse models have larger gains on the word-level N -
best ASR hypotheses than that on the 1-best hypothesis, and when
augmenting the word-level n-gram and confusion network features
with phonetic features in our sparse models, we obtained the best
performance in our dialogue act classification task. Empirical results
show that the elastic net model that balances sparsity and smooth-
ness obtains the best overall performance, while the L1,∞ structured
sparsity model yields promising results among structured and hier-
archical sparse models. Our error analysis shows that there is still
room for improving the sparse models. Whilst his paper focuses
on modeling textual outputs from ASR, sparse models can also be
considered for modeling front-end features such as MFCC. In the
future, we would like to investigate parameter sweep techniques for
structured and hierarchical sparsity models.
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