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ABSTRACT

Query expansion techniques were originally developed for text infor-
mation retrieval in order to retrieve the documents not containing the
query terms but semantically related to the query. This is achieved
by assuming the terms frequently occurring in the top-ranked doc-
uments in the first-pass retrieval results to be query-related and us-
ing them to expand the query to do the second-pass retrieval. How-
ever, when this approach was used for spoken content retrieval, the
inevitable recognition errors and the OOV problems in ASR make
it difficult for many query-related terms to be included in the ex-
panded query, and much of the information carried by the speech
signal is lost during recognition and not recoverable. In this paper,
we propose to use a second ASR engine based on acoustic patterns
automatically discovered from the spoken archive used for retrieval.
These acoustic patterns are discovered directly based on the signal
characteristics, and therefore can compensate for the information
lost during recognition to a good extent. When a text query is en-
tered, the system generates the first-pass retrieval results based on
the transcriptions of the spoken segments obtained via the conven-
tional ASR. The acoustic patterns frequently occurring in the spo-
ken segments ranked on top of the first-pass results are considered
as query-related, and the spoken segments containing these query-
related acoustic patterns are retrieved. In this way, even though some
query-related terms are OOV or incorrectly recognized, the segments
including these terms can still be retrieved by acoustic patterns cor-
responding to these terms. Preliminary experiments performed on
Mandarin broadcast news offered very encouraging results.

Index Terms— Query Expansion, Acoustic Pattern Discovery

1. INTRODUCTION

Spoken content retrieval will be very important to retrieve and
browse multimedia content over the Internet. Substantial effort has
been made in spoken content retrieval in recent years, and many
successful techniques have been developed [1, 2]. Most works
in spoken content retrieval nowadays focused on spoken term de-
tection (STD) [3], for which the goal is simply returning spoken
segments including the query terms. This is insufficient because
users naturally prefer to be offered all objects they are looking for,
regardless of whether the query terms are included or not. This
leads to substantial recent work on semantic retrieval of spoken con-
tent [4, 5, 6, 7, 8, 9, 10, 11, 12]. This paper thus focuses on retrieving
semantically related spoken segments using queries in text form.

The core problem of retrieving spoken segments semantically
related to the query is that many of such spoken segments may not

necessarily contain the query term. A popular approach to this prob-
lem in text information retrieval is query expansion, which automat-
ically adds semantically related terms to the query [13, 14, 15]. The
expanded query thus can retrieve objects not containing the origi-
nal query terms but semantically related to the query. Query expan-
sion techniques are very often realized with the concept of pseudo-
relevance feedback (PRF). In these methods, the first-pass retrieval
results are first generated, in which a small number of top-ranked ob-
jects is assumed relevant (or pseudo-relevant). Since many pseudo-
relevant objects may include some specific terms semantically re-
lated to the query, the original query can be expanded with these
terms to retrieve more relevant objects. Taking ASR transcriptions
as the text, such query expansion techniques for text information re-
trieval can be directly applied for spoken content retrieval [4, 5, 7, 9].

Fig. 1. The framework of the proposed approach.

However, even if the pseudo-relevant spoken segments actually
contain some terms suitable for query expansion, these terms may be
OOV or incorrectly recognized, never included in the transcriptions,
and therefore cannot help in query expansion. Such OOV problem
and recognition errors in ASR lead to the inevitable degradation in
the effectiveness of such query expansion techniques when applied
on spoken content. In fact, when transcribing speech signals into
text, much information is lost and not recoverable, and the OOV
problem and recognition errors are just prominent examples. Sub-
stantial efforts have been made to try to utilize information carried
in the speech signals in spoken content retrieval with a hope to com-

8297978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



pensate for the loss during recognition [16, 17, 18, 19, 20]. This is
also the direction of this paper.

In this paper, we propose to enhance the query expansion for
semantic retrieval of spoken content by utilizing a set of acoustic
patterns obtained via directly considering speech signal characteris-
tics. The framework of the proposed approach is shown in Fig. 1.
At the bottom of Fig. 1, each spoken segment in the archive used for
retrieval is represented in two different forms: lattices in text form
generated by the conventional ASR system based on a set of acous-
tic/language models (at the bottom right corner of Fig. 1), and the
one-best lists in acoustic patterns generated by another ASR engine
based on acoustic patterns (at the bottom left corner of Fig. 1). Each
acoustic pattern is a sequence of phoneme-like acoustic unit, and
both of these phoneme-like acoustic units and the word-like acous-
tic patterns and the acoustic pattern language model are automati-
cally learned from the spoken archive to be retrieved through (lower
middle of Fig. 1). When a text query is entered, the retrieval engine
(middle right of Fig. 1) matches the query terms with the text lattices
of the spoken segments to generate the first-pass retrieval result. Be-
cause the acoustic patterns are discovered in an unsupervised way,
the system does not know which text term an acoustic pattern corre-
sponds to, so the acoustic pattern one-best lists cannot be used in the
first-pass retrieval since the query is in text. The first-pass retrieval
results are not shown to the user. Instead, top-ranked segments se-
lected as pseudo-relevant segments. The system then extracts the
text terms possibly related to the query from these pseudo-relevant
segments to generate the expanded query in text form (upper middle
of Fig. 1), which gives a new set of retrieval results via the retrieval
engine in text (upper left of Fig. 1). Here we have the second version
of the expanded query based on acoustic patterns. The acoustic pat-
terns repeatedly occurring in the pseudo-relevant segments, probably
corresponding to some query-related terms, are also used to form the
second expanded query composed of acoustic patterns to retrieve the
spoken segments via the retrieval engine in acoustic patterns, and
the results for the two retrieval engines are integrated (upper left of
Fig. 1). In this way, even though some important query-related
terms are OOV or incorrectly recognized, the acoustic patterns
corresponding to these terms can be included in the expanded
query, and the spoken segments containing these acoustic pat-
terns can thus be retrieved. The results thus obtained are finally
shown to the user.

2. PROPOSED APPROACH

2.1. Off-line Preprocessing

Although any retrieval approach can be used, here we assume the
retrieval engine used in Fig 1 is based on the language modeling
retrieval approach [21, 22]. The basic idea for this approach is that
the query q and the spoken segment x are respectively represented
as language models. The segments x are then ranked based on the
KL divergence between the language models for the spoken segment
x and the query q. All language models below are unigram models
unless specified otherwise, although the proposed approach is not
limited to this case.

At the off-line preprocessing stage, the spoken archive to be re-
trieved is divided into spoken segments, each with a length of sev-
eral utterances. Then two different language models are generated
for each spoken segment: one based on the lattices generated by the
conventional ASR in text, and the other on the one-best lists obtained
with another ASR based on automatically discovered acoustic pat-
terns. These language models will be used in the following retrieval

and query expansion processes.

2.1.1. Segment Language Models based on Text Terms

Each segment x is first transcribed into a word lattice and a subword-
based lattice (each arc representing a subword unit hypothesis). The
expected counts for each term t (a word or a subword unit) are then
estimated from the lattices as in (1).

E[t|x] =
∑

u∈L(x)

N(t, u)P (u|x), (1)

where L(x) is the set of all possible paths in the lattice for x, u is a
path,N(t, u) the occurrence count of the term t in u, and P (u|x) the
posterior probability of the term (word or subword unit) sequence u
derived from the acoustic and language models.

The term distribution, or (unigram) language model, θx for each
spoken segment x is estimated in (2). 1

P (t|θx) =
E[t|x]∑
t E[t|x]

, (2)

where E[t|x] is in (1). Then θx is linearly interpolated with a back-
ground language model θb based on terms (words or subword units)
trained from all spoken segments in the spoken archive C to form a
smoothed model θ̄x [23], where

P (t|θb) =

∑
x∈C E[t|x]∑

t

∑
x∈C E[t|x]

(3)

is the probability of observing the term t in the whole archive C.

2.1.2. Segment Language Models based on Acoustic Patterns

Here we extend the widely studied unsupervised acoustic pattern dis-
covery techniques [24, 25, 26, 27, 28, 29, 30, 31, 32, 33] to find re-
peated acoustic patterns in the spoken archive. Such techniques have
been utilized for enhancing spoken document classification [34, 35,
36, 37], spoken term detection [24, 38, 39, 40], music retrieval [41]
and video retrieval [42]; but not yet fully leveraged for semantic
retrieval of spoken content. For the approach here each word-like
acoustic pattern is a sequence of several phoneme-like acoustic units
which are shared by many different word-like acoustic patterns and
modeled as HMMs. The transition probabilities between such word-
like acoustic patterns are further modeled by an n-gram language
model. The two-level phoneme-like acoustic units and word-like
acoustic patterns including the alphabet/vocabulary size, the lexicon,
and the HMM/n-gram parameters are all automatically learned in an
unsupervised way from the spoken archive to be retrieved. These re-
alize a second ASR system completely based on these acoustic pat-
terns of audio signals. This ASR generates a one-best list in acoustic
patterns for each spoken segment also used for retrieval. This is the
way to try to preserve some of the information in audio signals which
may be lost in conventional ASR. Complete presentation for discov-
ering such acoustic patterns is in a companion paper [43]. With the
spoken segments transcribed into sequences of acoustic patterns, the
counts for the acoustic patterns with label v in each spoken segment
x, denoted as C(v, x), give a language model φx in (4) based on
acoustic patterns 2,

P (v|φx) =
C(v, x)∑
v C(v, x)

. (4)

1The notation θ indicates a language model based on text terms (words or
subword units).

2The notation φ indicates a language model based on acoustic patterns
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Then φx is further interpolated by an acoustic pattern background
model φb trained from the whole spoken archive exactly as in (3) to
form a smoothed version φ̄x.

2.2. First-pass Retrieval

The input text query q can be represented by a term-based3 language
model θq ,

P (t|θq) =
N(t, q)

|q| , (5)

where N(t, q) is the number of term t in query q, and |q| is total
number of terms in query q. Because the input query is in text form,
it can only be matched with the term-based segment models θ̄x dis-
cussed in Subsection 2.1.1. The language models based on acoustic
patterns obtained in Section 2.1.2 cannot be involved here 4. The rel-
evance score function S0(q, x) in (6) is used for ranking the spoken
segments x for the query q in the first pass.

S0(q, x) = −[(1− w1)KL(θwq |θ̄wx ) + w1KL(θsq |θ̄sx)], (6)

assuming both word-based and subword-based models are used.
S0(q, x) is based on the weighted sum of the KL divergences be-
tween word query model θwq (term t replaced by word w in (5))
and the smoothed word segment model θ̄wx (in parallel with θ̄x in
Subsection 2.1.1 but for terms being words) and similarly the KL
divergence between subword query model θsq and smoothed sub-
word segment model θ̄sx. w1 is the weight. The segment list ranked
according to (6) is the first-pass retrieval results used for selecting
the pseudo-relevant segments below.

2.3. Query Expansion

Although all different approaches for query expansion can be ap-
plied, here we adopt and modify the query-regularized mixture
model for text information retrieval [13]. This model assumes that
the words in pseudo-relevant documents are either query-related
words or general words, with a document-dependent ratio between
the two. For example, for those irrelevant documents taken as
pseudo-relevant, this ratio for the query-related words to the general
ones should be very low. These document-dependent ratios and
which words are query-related are actually unknown, but can be
estimated from the pseudo-relevant documents. This assumption
equally applies for words, subwords and acoustic patterns in spoken
segments here. Based on this model, query-related words, subwords
and acoustic patterns are extracted from the pseudo-relevant spoken
segments to form expanded query language models θwqe, θsqe, and
φqe respectively for words, subwords and acoustic patterns5. The
final results shown to the user is ranked according to S(q, x):

S(q, x) = −
{

(1− w2)
[
(1− w1)KL(θwqe|θ̄wx ) + w1KL(θsqe|θ̄sx)

]
+w2KL(φqe|φ̄x)

}
. (7)

In (7), the weight w1 is between scores obtained by word-based and
subword-based expanded query language models similar to that in
(6), and the weight w2 is between scores based on text terms (words
and subwords) and acoustic patterns. θ̄wx , θ̄sx and φ̄x are respectively
the corresponding smoothed segment language models.

3word- or subword-based
4When input query is spoken, it can be represented by acoustic patterns,

but that is out of the scope of this paper.
5The subscripts qe indicate the expanded query language models.

2.3.1. Query Expansion for Text Terms

Below is the way to estimate the expanded query model θqe for
text terms. Suppose the N pseudo-relevant spoken segments are
{x1, ..., xn, ..., xN}. With the assumption that the terms in each
pseudo-relevant spoken segment are either query-related or general,
the segment language model θxn in (2) should be close to an esti-
mated model θ′xn

which is the interpolation of the expanded query
model θqe to be estimated (for query-related words) and the back-
ground language model θb in (3) (for general words) with a segment-
dependent weight αn.

P (t|θ′xn
) = αnP (t|θqe) + (1− αn)P (t|θb), (8)

whereαn is the segment-dependent interpolation weight for segment
xn, which is to be estimated as well. It is therefore reasonable to take
the query language model θqe minimizing (9) as the expanded query
model.

F1(θqe, α1, ..., αN ) =

N∑
n=1

KL(θxn |θ
′
xn

), (9)

which means the sum of the KL divergence between each segment
model θxn and the corresponding interpolated language model θ′xn

in (8) for all theN pseudo-relevant segments should be minimized if
θqe is properly chosen. However, the model θqe minimizing (9) may
be just for the common content of the pseudo-relevant segments, not
necessarily query-related. To better handle this problem, θqe is “reg-
ularized” by the original query model θq in (5), and we define a
function F2(θqe) as the prior for θqe based on θq ,

F2(θqe) = KL(θq|θqe). (10)

F2(θqe) will be smaller for model θqe closer to θq . The expanded
query model θqe and the weight αn are actually estimated by mini-
mizing the following objective function:

F (θqe, α1, ..., αN ) = F1(θqe, α1, ..., αN ) + λF2(θqe), (11)

where λ is a parameter controlling the influence of the function
F2(θqe). The model θqe estimated via minimizing (11) would not
be totally drifted away by the pseudo-relevant segments because the
function F2(θqe) prefers the expanded query model θqe to be simi-
lar to the original query model θq . The above is equally applied to
words or subword units, and gives the expanded query models θwqe
and θsqe in (7).

2.3.2. Query Expansion for Acoustic Patterns

Equation (11) above cannot be directly used to estimate the expanded
query model based on acoustic patterns φqe because F2(.) in (10) is
undefined, or the input text query can not be represented in acoustic
patterns. We can simply find φqe and α′n minimizing (12),

F ′1(φqe, α
′
1, ..., α

′
N ) =

N∑
n=1

KL(φxn |φ
′
xn

), (12)

where

P (v|φ′xn
) = α′nP (v|φqe) + (1− α′n)P (v|φb), (13)

which is the interpolation of φqe and the background model φb in
Section 2.1.2 with weight α′n, and (12) and (13) are very similar to
(9) and (8). However, without the query regularization, the above es-
timation may be risky, or φqe may be drifted away. Here we assume
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the acoustic patterns approximately correspond to the text terms, so
for a spoken segment xn, the ratio α′n in (13) for acoustic patterns
and the ratio αn in (8) for text terms should be close. Hence, when
minimizing (12), it may be reasonable to set α′n = αn in (13) in-
stead of trying to estimate them, and therefore only φqe is estimated.
This yields more robust expanded queries based on acoustic patterns
than without query regularization.

3. EXPERIMENTS

3.1. Experimental Setup

The spoken archive to be retrieved in the experiments consisted of 4
hours of Mandarin broadcast news stories collected daily from local
radio stations in Taiwan in 2001. We manually segmented these sto-
ries into 5034 spoken segments, each with one to three utterances.
A trigram language model estimated from a 40M news corpus col-
lected in 1999 and a lexicon of 62K words was used for recognition.
The acoustic models used included 151 intra-syllable right-context-
dependent Initial-Final models for Mandarin syllables, trained using
8 hours of broadcast news stories collected in 2000. The beam width
for recognition was 60, and the one-best recognition character accu-
racy for the spoken archive was 75.27%. After each spoken segment
was transcribed into a word lattice, we further transformed each Chi-
nese word arc in the lattice into a sequence of concatenated corre-
sponding Chinese character arcs to form character lattices, or char-
acters are taken as subword units here. 29 single word in-vocabulary
queries were manually selected for the retrieval experiments. The
corresponding semantically relevant spoken segments were manu-
ally selected, which did not necessarily contain the queries. Mean
average precision (MAP) was used as the performance measure [44].

3.2. Experimental Results

Fig. 2 (a) shows the MAP yielded by (7), integrating the results of
expanded queries based on text terms (θwqe for words and θsqe for
characters) and acoustic patterns (φqe) with different numbers of
pseudo-relevant segments (N = 5, 10, 15, 20, 25). The red line in
the figure is the MAP of the first-pass retrieval results without query
expansion. The horizontal scale is for different values of the inter-
polation weight w2 for the acoustic patterns in (7) with w2 = 0 for
the results without acoustic patterns. w1 in (6) and (7) was fixed to
0.95 6, and λ in (11) was 800. First of all, comparing the MAP of the
first-pass results and the query expansion based on text terms only
(red line vs w2 = 0), we found that query expansion based on text
terms offered some improvements over the baseline even though the
recognition errors and OOV problems probably limited its perfor-
mance. With the help of the acoustic patterns, extra improvements
over the query expansion based on text terms were always achieved
(w2 > 0 vsw2 = 0) as long asw2 was smaller than 0.5 regardless of
the number of pseudo-relevant segments (N ). This verified that the
acoustic patterns directly charactering speech signals are really help-
ful for query expansion in spoken content retrieval. Also, as N was
raised, the MAP first increased and then decreased. Larger N im-
plies more segments considered, and more training data used in (11)
and (12). However, whenN was too large, more irrelevant segments
were inevitably included in the pseudo-relevant segment set and dis-
turbed the estimation thereby. The best result was for N = 10 and
w2 = 0.40, which means query expansion based on text terms were

6This setting yielded the best results for query expansion based on text
terms only, or w2 = 0.

Fig. 2. MAP yielded by integrating query expansion based on text
terms (words plus characters) and acoustic patterns. (a) for different
numbers of pseudo-relevant segments (N = 5, 10, 15, 20, 25) with
λ = 800 and (b) for N = 10 and different values of λ in (11).
The red lines in the figures are the MAP of the first-pass retrieval
results. The horizontal scale is the interpolation weight w2 in (7),
and w2 = 0 is the case without acoustic patterns.

more precise than that based on acoustic patterns. N was thus set to
10 in the following experiments.

Fig. 2 (b) is exactly the same as Fig. 2 (a), except that N = 10
and different values of λ in (11) were tested. We found that small
λ (λ = 100) yielded very poor results even worse than the first
pass obviously because the query model was drifted too much by the
pseudo-relevant segments. However, when λ was large enough (λ ≥
400), improvements over the first pass and w2 = 0 were always
observed. This verified the importance of the regularization term in
(11), while the acoustic patterns always improved the performance
of query expansion (w2 > 0 vs w2 = 0) when λ was large enough.

4. CONCLUSION

In this paper, we used acoustic patterns discovered from the spoken
content to enhance the query expansion techniques originally devel-
oped for text information retrieval. The usefulness of the proposed
approach were verified on a Mandarin broadcast news corpus.
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