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ABSTRACT
In this paper the use of acoustic similarity of speech intervals

for generating improved confidence scores for spoken term detec-
tion (STD) is investigated. A procedure based on acoustic dotplots
which requires no training data is deployed for discovering similar
speech intervals. A graph based random walk algorithm incorporates
acoustic similarity of hypothesized term occurrences for improving
the corresponding confidence scores. The proposed approach is eval-
uated in an open vocabulary STD task defined on a lecture domain
corpus. It is shown that updating the confidence scores in this fash-
ion results in a significant increase in term detection performance of
out of vocabulary search terms. A relative improvement of 12.9% in
figure of merit was gained relative to that obtained from a baseline
lattice based STD system.

Index Terms— Open vocabulary spoken term detection, Dot-
plot, Random walk on directional graphs

1. INTRODUCTION

There is a wide variety of techniques that are currently being used
for spoken term detection (STD) from repositories of spoken audio
recordings. The most common approaches rely on lattices gener-
ated by a large vocabulary continuous speech recognition (LVCSR)
system [1, 2, 3, 4, 5]. In addition, there are many alternative STD
approaches in use that require fewer linguistic resources than those
required by LVCSR systems [6, 7]. All STD systems produce hy-
pothesized occurrences of query terms in response to queries sub-
mitted by users of a search engine. These hypotheses are generally
accompanied by a score that provides a measure of confidence that
the hypothesized query term corresponds to an actual occurrence of
the term in the spoken audio.

The goal of the techniques presented in this paper is to generate
a new set of term confidence measures that incorporate a measure
of acoustic similarity between hypothesized term occurrences. The
similarity measure is obtained from acoustic dotplots described in
Section 2. This measure is important since it is generated using a
non-parametric system that requires no speech or language resources
for training. The updated confidence measures are obtained by form-
ing a directed graph whose vertices correspond to the acoustic in-
tervals containing term hypotheses and whose edges correspond to
similarity measures derived from the acoustic dotplots. A random
walk on this graph, described in Section 3.2, is performed to update
the confidence measures associated with hypothesized terms.

The process of generating term confidence measures presented
in this paper is very general in that it can be applied to hypothesized
acoustic intervals generated by any STD system. However, its ap-
plication is particularly appropriate to the case where lattice based

STD is applied to search terms that are out of vocabulary (OOV) for
the underlying LVCSR system. The experimental study in Section 5
presents the application of the graph based approach to updating con-
fidence measures for detecting OOV search terms in a lecture speech
domain. Moreover, in Section 5 the impact of the graph based ap-
proach on STD performance for OOV terms will be presented.

This work is related to previous work in using dotplots for mea-
suring acoustic similarity and graph based rescoring of STD hy-
potheses. Techniques for generating acoustic dotplots have been
investigated and applied to term discovery [8, 9] and topic detec-
tion [10]. The graph based techniques have also been applied to
rescoring STD hypotheses in lattice based STD systems [3]. How-
ever, this previous work relied on measures of acoustic similarity
derived from the ASR lattices and therefore was only applicable to
in vocabulary (IV) search terms. The important aspect of the tech-
niques presented here is that they are implemented completely sep-
arate from any STD system and require no training resources what-
soever.

2. DISCOVERING SIMILAR SPEECH INTERVALS

The function of this system component is to discover intervals in the
speech signal that are acoustically similar. This process starts by us-
ing an energy based voice activity detector to extract a collection of
speech segments. Next, a d-dimensional feature vector is extracted
from each frame of each segment. For a segment containing o frames
this leads to a feature vector time series representation of the form
{l1, l2, . . . , lo}, where li corresponds to the feature vector extracted
from frame i. All pairs of speech segments are then searched for
acoustically similar intervals using a zero resource word discovery
system [8] based on the graphical method of acoustic dotplots.

An acoustic dotplot derived from a feature vector time series
{l1, l2, . . . , lo} is an o × o matrix denoted by M whose elements
mi,j are defined by the cosine similarity between feature vector li
and lj :

mij =
1

2

[
1 +

〈li, lj〉
‖li‖‖lj‖

]
. (1)

The similarity measure in Equation 1 takes a value of 1 when li and
lj point in the same direction, 0.5 when they are orthogonal, and 0
when they point in opposite directions.

An example dotplot is depicted in Figure 1 where the brightness
of the pixels is proportional to the similarity between the correspond-
ing feature vectors as computed in Equation 1. The acoustic feature
vectors used for plotting this figure are the standard 39-dimensional
perceptional linear prediction (PLP) features. The main diagonal in
this figure corresponds to the self similarity of the feature vectors
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Fig. 1. An example acoustic dotplot obtained from a 5 second long
speech utterance.

and any diagonal line segment off the main diagonal represents a
repetition of a term (word or phrase). For example the boxed line
in the figure corresponds to the repetition of the term one million
dollars. Having used voice activity detection to restrict our search to
speech regions, we prevent the discovery algorithms from returning a
flood of silence repetitions. Thus, given our set of speech segments,
we need only construct the acoustic dotplot between all pairs and
search each for diagonal lines. Constructing the acoustic dotplot is
efficiently performed using randomized algorithms described in [8].
The search for approximate diagonal line structures is accomplished
using a series of post processing algorithms defined in [11]. Finally,
diagonal line matches are further refined using segmental dynamic
time warping (SDTW) [9]. The outputs of this system is a collec-
tion of similar interval pairs from the speech segments of the form
(yi, yj), where each interval yi is represented by its start and end
time. The system also generates a similarity measure between each
interval pair (yi, yj) as ki,j which is derived from match probability
from a logistic regression on a collection of generic dotplot features.

3. UPDATING STD CONFIDENCE SCORES

In this section the graph based framework for updating STD confi-
dence scores using the information derived from the zero resource
acoustic dotplots is presented. First, the process of constructing a
directed graph from the discovered acoustically similar intervals is
explained. Next, the random walk algorithm on directed graphs is
reviewed and the process of incorporating hypothesized term occur-
rences and their corresponding confidence scores into the graph is
described. Finally, the issues involved in using the random walk for
updating term confidence scores are addressed.

3.1. Graph Construction

The output obtained from the zero resource acoustic dotplot in
Section 2 is composed of two components, a list of interval pairs,
(yi, yj), that are acoustically similar and a match probability, ki,j ,
between each pair. Let G = (V,E,W ) be a directed graph repre-
senting the acoustically similar intervals with a set of vertices, V ,

connected by directed edges, E, whose corresponding weights are
denoted by W . Each interval pair (yi, yj) is represented in G with
a pair of vertices (vi, vj) that are connected by two directed edges
ei,j and ej,i. While, in general the weights on two edges connecting
two vertices of a directed graph can have different values, in our
scenario both weights, wi,j and wj,i are set to the match probability
ki,j associated with the corresponding vertices and hence are equal.
The process of constructing the graph from the similar intervals
discovered using the acoustic dotplot is illustrated in Figure 2.
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Fig. 2. The process of constructing a directed graph from acousti-
cally similar intervals.

3.2. Random Walk on Directed Graphs

In a random walk process on a directed graph such as G, the system
starts from some vertex and at each time step, selects one of the
edges directed from the current state with a probability proportional
to the weight of the edge, and moves to another vertex. Hence, the
probability of being at a given vertex, vi, at time step t depends on
the probability of being at vertices that have edges directed to vi at
the previous time t− 1. This probability can be computed as

pt(vi) =
∑
j∈Bi

wj,i
rj

pt−1(vj), (2)

where Bi is the set of vertices with edges directed to vi and the
normalization factor rj =

∑
z wz,j is the sum of weights of all the

edges directed from vj . The probability of each of the vertices is
updated at each time step according to Equation 2 until it reaches
its stationary value. Assuming that the stationary value of all the
probabilities is reached at time step π, we have

pπ(vi) =
∑
j∈Bi

wj,i
rj

pπ(vj). (3)

Representing the probability distribution of the vertices in a col-
umn vector, pπ = [pπ(v1), pπ(v2), . . . , pπ(vm)]T , and incorporat-
ing the normalized weights in an m by m matrix N with elements
nj,i =

wj,i

rj
, Equation 3 can be rewritten in matrix form as

pπ = Npπ. (4)

Based on Equation 4 the stationary probability distribution at time π
is the eigenvector of N whose corresponding eigenvalue is 1.
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3.3. Random Walk with Bias

In some scenarios there are sources that provide additional informa-
tion about the probability distribution for the vertices of the graph.
This probability distribution can be incorporated into the random
walk process by adding an additional term in Equation 2,

pt(vi) = α
∑
j∈Bi

wj,i
rj

pt−1(vj) + (1− α)c(vi), (5)

where c(vi) represents the additional probability of the vertex vi
[12]. The additional information in our case is derived from an STD
system. For a query termQ, an STD system outputs a list of hypoth-
esized term occurrences accompanied by confidence scores in the
form of (x1Q, f

1
Q), (x

2
Q, f

2
Q), . . . , (x

u
Q, f

u
Q), where xiQ corresponds

to the ith hypothesized occurrence of Q with confidence score f iQ.
Each hypothesized occurrence of the query term xiQ is assigned to
a vertex in the graph vz if there is a substantial overlap between the
underlying interval yz and xiQ. In the cases where no such vertex is
found in the graph, xiQ is assigned a new vertex. Having assigned
vertices of the graph to all the hypothesized occurrences, the cor-
responding confidence scores are normalized and regarded as addi-
tional probabilities of the vertices. For the vertex vz corresponding
to hypothesized occurrence xiQ, the additional probability c(vz) is
obtained by

c(vz) =
fi∑u
j=1 fj

. (6)

Representing the additional probabilities in a column vector
c = [cv1 , cv2 , . . . , cvn ]

T and using an auxiliary m-dimensional
row vector of ones, e = [1, 1, . . . , 1], the stationary probability
distribution of (4) can be written as

pπ = αNpπ + (1− α)c
= (αN+ (1− α)c e)pπ = Hpπ.

(7)

Equation (7) indicates that the stationary probability distribution pπ
is the eigenvector of the m by m matrix H whose corresponding
eigenvalue is 1. The stationary probability of the vertices corre-
sponding to the hypothesized term occurrences are then extracted
from the graph and are regarded as new confidence scores. The
detection performance obtained using the new confidence scores is
evaluated in Section 5 for different threshold values.

4. A LATTICE BASED STD SYSTEM

The lattice based STD system used in this work is based on a hy-
brid two pass approach [13]. The offline process of configuring this
system starts by segmenting the audio repository into short segments
and feeding them to an LVCSR system. The LVCSR system in turn
generates a word lattice for each audio segment. An efficient index-
ing technique described in [1] is then applied to the collection of
lattices and an inverted index is constructed. In response to a query
term typed by a user, search is performed in two passes.

In the first pass search, a subword based approach is deployed
for identifying audio segments likely to contain occurrences of the
query term using the index. The second pass search begins by pro-
ducing a phoneme representation for the candidate segments ob-
tained in the first pass. Depending on the query term, two strate-
gies are considered for generating the phonemic representation. For
the IV query terms the phonemic representation is obtained by ex-
panding the corresponding word lattices into phone lattices using
baseform pronunciations obtained from the ASR lexicon. For the

OOV query terms, the 1-best hypotheses of an unconstrained hybrid
HMM/NN phone decoder is used as the phonemic representation of
the candidate segments. In either case, once a phonemic representa-
tion for the candidate segments is obtained, it is matched against the
phonemic expansion of the query term Q. A score is then computed
for all possible alignments using a phone edit distance [1]. Finally,
phoneme sequences with scores higher than a threshold are identi-
fied and the corresponding intervals in the audio segments, xiQ, and
the corresponding confidence scores, f iQ, are returned.

5. EXPERIMENTAL STUDY

This section presents an experimental study for evaluating the per-
formance of the confidence score updating technique described in
Section 3.2. The study evaluates the ability of this technique to im-
prove the detection performance for OOV query terms produced by
the lattice based STD system described in Section 4. The evaluation
is performed on a lecture speech task domain which is described in
Section 5.1. Section 5.2 describes the configuration of the baseline
STD system. In Section 5.3, the detection performance obtained
from the original confidence scores generated by the baseline STD
system are compared to that obtained using the updated confidence
scores.

5.1. Task Domain and Graph Construction

A repository of audio recordings of McGill course lectures available
at [14] is used for this study. A number of lectures from this repos-
itory were randomly selected and manually transcribed for evalua-
tion and development purposes. The evaluation set consists of two
lectures containing 17914 words with a total duration of 131 min-
utes. An automatic segmentation is performed on the test lectures
and segments with an average duration of 2 seconds are generated
and acoustic features are extracted from them. The acoustic feature
vectors include 12 perceptual linear prediction (PLP) features and
an energy feature plus their first and second derivatives amounting
to 39 features. After performing mean and variance normalization of
the feature vectors they are used for generating the acoustic dotplots.
The algorithm for extracting lines in the dotplots is tuned to return
similar intervals of about half a second which is a rough estimate
of a word duration. The directed graph constructed from these in-
tervals contains 4500 vertices with 83000 edges. The random walk
algorithm of Equation 7 was performed on the graph for all the query
terms for a range of values of α and best average STD performance
was obtained with α equal to 0.6.

5.2. Baseline STD system

The LVCSR system used in the baseline STD system described in
Section 4 is a GMM/HMM recognizer originally developed for the
AMI project [15]. A series of acoustic and language modeling tech-
niques described in [13] were applied to this recognizer for config-
uring it for the lecture speech task. A word accuracy of 56.5 and a
language model test set perplexity of 143 were measured on the test
set. With a vocabulary of 52,800 words, the rate of occurrence of
OOV words in the test lectures is a relatively high 11.2 percent.

To evaluate STD performance, a set of 175 query terms were
chosen from the most frequent content words in the transcriptions of
the test set. The set of query terms consists of 141 IV words and
34 OOV words. The length of the phonemic expansion of the query
terms ranges from as few as 2 phonemes for “ear” to 17 phonemes
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for the term “phenylpropanolamine”. There are a total of 1442 oc-
currences of query terms in the test set transcriptions out of which
1199 are IV and 243 are OOV occurrences. A more detailed de-
scription of the STD system and its performance can be obtained in
[1, 13].

5.3. Performance Evaluation

The performance of the STD systems is measured in terms of proba-
bility of detection and the number of false alarms per query term per
hour. The probability of detection is defined as the number of cor-
rectly detected query terms normalized by the total number of actual
occurrences of the query term in the test set. A query term detection
is considered to be “correct” if its starting time is within 2 seconds
of the starting time of the labeled actual occurrence of the term in
the test data. Otherwise it is labeled as a false alarm

Fig. 3. Detection performance obtained for IV and OOV query terms
using original and updated confidence scores.

The data points used for plotting the curves in Figure 3 are ob-
tained by varying the threshold applied to the confidence scores as-
sociated with the hypothesized occurrences of the query terms. With
a reasonably low threshold, there are in total 149 correctly hypoth-
esized occurrences of the OOV query terms and 1037 correctly hy-
pothesized occurrences of the IV query terms derived from the STD
system. Hence, the maximum recall rate achievable for OOV query
terms is 61% and for the IV query terms is 86%. The top curve in
Figure 3 represents the performance of the lattice based STD sys-
tem for IV query terms. The two bottom curves correspond to de-
tection performances of OOV query terms obtained using the STD
confidence scores and updated scores derived from the graph based
procedure in Section 3.2.

Two important observations can be made from this figure. First,
despite using subword based algorithms to detect occurrences of the
OOV query terms in the lattice based STD system, the detection
rate for OOV query terms is still substantially lower than that of the
IV query terms. Second, comparing the two curves plotted for the
OOV query terms indicates that a significant improvement in detec-
tion performance is gained by updating the confidence scores using
the information extracted from the zero resource acoustic dotplots.
It can be seen that confidence score updating results in a relative im-
provement of up to 26% in recall rate at 2 false alarms per query
term per hour.

For evaluating the detection performance over a range of false
alarms a single figure of merit (FOM) can be derived from the plot
in Figure 3. The FOM values reported in Table 1 are obtained by
averaging the area under the bottom two curves in Figure 3 over a
range from 0 to 10 false alarms per query term per hour. Table 1
shows that using the updated confidence scores leads to a relative
improvement of 12.9% in FOM compared to the original confidence
scores.

Confidence Scores FOM
Original 38.67%
Updated 43.65%

Table 1. Figure of merit obtained from original and updated confi-
dence scores averaged over all OOV query terms.

6. SUMMARY & CONCLUSION

The use of a graph based technique for exploiting the acoustic sim-
ilarity of speech intervals for improving the performance of open
vocabulary STD systems was investigated here. The similarity of
speech intervals was discovered with no training or vocabulary us-
ing zero resource acoustic dotplots obtained directly from acoustic
signals. The performance of the proposed system was evaluated in a
lecture domain task for a set of OOV query terms. It was shown that
for the hybrid STD system used in this study, the detection figure of
merit for OOV query terms improved by 12.9% when the STD con-
fidence scores were updated by the zero resource system using the
graph based approach.

It is important to note that this procedure for updating confi-
dence scores is completely independent from the STD system used
to generate the hypothesized term occurrences. Hence, it can be ap-
plied without requiring any additional resources to any task domain
and any STD system.
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