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ABSTRACT

We study spoken term detection (STD) – the task of deter-
mining whether and where a given word or phrase appears in
a given segment of speech – using articulatory feature-based
pronunciation models. The models are motivated by the re-
quirements of STD in low-resource settings, in which it may
not be feasible to train a large-vocabulary continuous speech
recognition system, as well as by the need to address pronun-
ciation variation in conversational speech. Our STD system is
trained to maximize the expected area under the receiver oper-
ating characteristic curve, often used to evaluate STD perfor-
mance. In experimental evaluations on the Switchboard cor-
pus, we find that our approach outperforms a baseline HMM-
based system across a number of training set sizes, as well as
a discriminative phone-based model in some settings.

Index Terms— spoken term detection, articulatory fea-
tures, AUC, structural SVM, discriminative training

1. INTRODUCTION

Spoken term detection (STD) is the problem of determin-
ing whether, and optionally where, a given utterance con-
tains a query term (a word or phrase) of interest. Typical
STD approaches rely on large-vocabulary continuous speech
recognition (LVCSR) systems trained on large amounts of
data ([1, 2], inter alia). Such approaches are infeasible in
low-resource settings, e.g. for languages or domains where
training data are limited. In recent work, we have shown that
a discriminative approach for STD can outperform a compa-
rable HMM-based system in a limited-data setting [3].

In the current work, we explore an articulatory feature-
based (AF-based) model for STD in conversational speech.
Pronunciation variability in conversational speech is one of
the leading causes of speech recognition errors [4, 5, 6].
Standard phone-based pronunciation models, which assume
that phonemes are strung together to produce word pronun-
ciations, have well-known drawbacks [7, 8]. Articulatory
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feature-based models (sometimes referred to as “produc-
tion models”, “phonological feature models” or “gestural
models” in the literature) have been proposed as an alterna-
tive [9, 10, 11, 12]; there is evidence that such approaches
may improve recognition of noisy speech [13, 14, 15],
adapt better across languages [16], improve hyperarticu-
lated speech recognition [17], and address pronunciation
variation [18, 19]. Some work has also begun to address
discriminative training of AF-based models [20, 21].

Besides the potential benefit of articulatory models for
conversational speech, it has also been argued that they should
have advantages in low-resource settings due to their parsi-
mony [7, 9]: While a given small training set may not con-
tain sufficient examples of every context-dependent phone (or
even monophone) to learn a robust model, many phones share
the same articulatory features, so that articulatory models fa-
cilitate data sharing across phones. This work is therefore
motivated by the needs of STD in both conversational speech
settings and low-resource settings.

2. ARTICULATORY FEATURE-BASED MODEL

We address the pronunciation variation observed in conver-
sational speech, as well as the challenges of a low-resource
setting, with STD systems using an articulatory feature-
based model, based on previous work by ourselves and oth-
ers [10, 18, 22, 23]. The proposed model employs articulatory
features that are based on the tract variables of articulatory
phonology [24]. These variables represent the configurations
of the speech articulators: the constriction degrees and po-
sitions of the lips, tongue tip, and tongue body; the state of
the velum; and the state of the glottis. We build an AF-based
baseform dictionary of canonical pronunciations by mapping
the phones in a standard dictionary to their corresponding AF
targets, expanding from the mapping defined in [25] to ensure
a unique AF configuration for each phone.

We model pronunciation variation by allowing AF streams
to transition asynchronously from one target state to the next.
When all AFs are synchronized, the resulting surface pro-
nunciation is identical to the canonical pronunciation; asyn-
chronous transitions result in non-canonical pronunciations.
Examples of non-canonical pronunciations resulting from
asynchrony include nasalization, anticipatory/preservatory
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Fig. 1. Non-canonical pronunciation of the word ‘sense’. The
glottis and velum desynchronize from the other features, pro-
ducing an epenthetic [t] and nasalized [eh].

rounding, and epenthetic stop insertions (see Fig. 1).1

Formally, we model pronunciation via a set of K artic-
ulatory feature streams.2 We assume that the waveform is
parameterized into acoustic feature vectors (e.g., PLPs) x =
(x1,x2, · · · ,xT ), where xt ∈ X ⊆ Rd is a feature vector for
frame t. Given an utterance x and a query term v, we denote
by |v| the number of phones in the canonical pronunciation
of v. We denote the corresponding sequence of articulatory
targets for stream i as (σi

1, σ
i
2, · · · , σi

|v|). For a given hypoth-
esized start and end time, (1 ≤ s < e ≤ T ), we denote a
valid articulatory segmentation s of v as the matrix of values
that represent the start and end times for each of the AF states:
si,j = sij where sij is the start time of the jth unit in stream
i (i.e. σi

j). Thus, s = si1 < si2 < · · · < si|v| < e, so that
the state j in stream i extends from t = sij to t = sij+1 − 1,
where si|v|+1 = e. We use the notation s ∼ (s, e) to denote an
articulatory segmentation s that begins at frame s and ends at
frame e.

In order to reduce computational complexity [23] and
eliminate implausible segmentations, we restrict the amount
of asynchrony to some number of states M : For all pairs
of streams i, j and for each unit 1 ≤ k ≤ |v| in the pro-
nunciation, the extent of σi

k must lie between the extents of
the succeeding and preceding M units in all other streams,
i.e. sjk−M ≤ sik and sik+1 ≤ sjk+M . In particular,
setting M = 0 would enforce complete synchrony. Finally,
we denote the AF value for stream i hypothesized at time
frame t under segmentation s as pit(s), i.e. pit(s) = σi

j for
sij ≤ t < sij+1. Our notation is presented in Fig. 1.

1Another component of pronunciation variation, besides asynchrony, is
substitution (typically reduction) of one AF value for another. This has been
explored in other work (e.g., [19]) and is not modeled explicitly here, but it
is implicitly modeled by AF classifier posteriors; see subsequent sections.

2In experiments, we assume that lip features form a fully synchronized
“bundle”, as do all tongue features and the pair (glottis, velum), so K = 3.

3. DISCRIMINATIVE MODEL FOR STD

We now turn to constructing a spoken term detector and train-
ing it using a discriminative algorithm based on [26]. Our
goal is to learn a function f : X ∗ × V∗ → R, which takes
as its input a speech utterance x ∈ X ∗ and a query term
v ∈ V∗, where V is the vocabulary of words, and returns a
score f(x, v) ∈ R representing the confidence that the query
term occurs in the utterance. In a practical system, the utter-
ance x is declared to be a putative hit for a query term v if
f(x, v) > b for some threshold b ∈ R. We model the STD
function, parameterized by a set of linear weights w ∈ Rn, as

fw(x, v) = max
s∈S

w · φ(x, v, s) (1)

where S is the set of all valid articulatory segmentations and
φ(x, v, s) ∈ Rn is a feature vector. The score in Eq. 1 cor-
responds to the score of the highest scoring segmentation,
s, over all possible start and end times within the utterance
x for the term v. The feature vectors, φ(x, v, s), are com-
posed of a set of pre-defined feature maps {φj}mj=1, where
φj : X ∗ × V∗ × S → Rr. Each feature map takes as input
the acoustics x, the term v, and the articulatory segmentation
s and returns an r-dimensional vector. We note that although
the maximization in Eq. 1 is over an exponential number of
possible segmentations, in the case where the feature maps
are decomposable, the maximizing segmentation can be com-
puted using dynamic programming as described in [23].

3.1. Feature Maps
We use two types of feature maps analogous to those used in
our previous work on phone-based STD [3]. Our feature maps
are constructed from a set of feature functions ξ : X → Rr

computed from the acoustics x. The use of arbitrary feature
functions allows us to leverage diverse sources of informa-
tion. Given a suitable feature function ξ(·), our first set of
feature maps compute the confidence that the acoustic frames
correspond to the hypothesized configurations of AFs:

φ1,q1,··· ,qK =
1

s−e+1

e∑
t=s

ξ(xt)δ[p1
t (s)=q1] · · · δ[pK

t (s)=qK ]

(2)
where each qi ∈ Qi is a value that AF stream i can take and
δ[a] = 1 if the condition a is true and 0 otherwise. Thus, we
have |Q1| × · · · × |QK | features maps of the first type, each
of which is a vector of length equal to the length of ξ.

The second set of feature maps correspond to AF state
transitions, and measure the relationship between the acous-
tics at a transition and its left/right states:

φ2,i,q1,q2 =
1

s−e+1

e∑
t=s+1

ξ(xt)δ[pi
t−1(s)=q1]δ[pi

t(s)=q2] (3)

where q1, q2 ∈ Qi are possible states for stream i. As in Eq. 2,
each feature map is a vector of length equal to the length of ξ
with a total of

∑K
i=1

∣∣Qi
∣∣2 feature maps of this type.

Note that the feature maps in Eqs. 2 and 3 are normalized
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by the length of region in which the term has been hypoth-
esized, in order to make scores comparable across different
segment lengths. Also, we note that if we restrict the model
to contain only a single stream, whose values correspond to
the phoneme sequence in the term’s pronunciation, then the
resulting feature maps are identical to those used in our pre-
vious STD approach using a phone-based model [3].

3.2. Large-Margin Training to Optimize AUC

The STD function defined in Eq. 1 represents the confidence
that the term v was uttered in the utterance x. For a given
threshold b, the utterance is declared to contain the term if
fw(x, v) > b. The trade-off between hits and misses can be
quantified using the receiver operating characteristic (ROC)
curve, which is the true-positive (detection) rate versus false-
positive rate across the range of possible thresholds. The area
under the ROC curve (AUC) is a measure of performance av-
eraged across all possible thresholds, which ranges from 0.5
(chance performance) to 1 (perfect detection). Our goal is
to learn the model parameters w in Eq. 1 so as to maximize
the AUC on unseen data. We do this using the algorithm de-
scribed in [3], which we briefly outline here for completeness.

We assume that we can construct a set of N training ex-
amples T = {vi,x+

i ,x
−
i , s

+
i , e

+
i }Ni=1, where each example

consists of a query term vi ∈ V∗, a “positive” utterance x+
i

that contains the term, a “negative” utterance x−i in which the
term is absent, and the start and end frames of the term in
the positive utterance (s+i , e

+
i ). The configuration of weights

that maximizes the expected AUC is related to the Wilcoxon-
Mann-Whitney statistic [27]. We determine the optimal set
of weights by minimizing the following regularized structural
hinge loss over the training set:

w∗ = argmin
w

λ

2
||w||2+ 1

N

N∑
i=1

[1− fw(x+
i , vi) + fw(x−

i , vi)]+

(4)
where [x]+ = max{0, x} and λ is a regularization param-
eter that prevents overfitting. Note that we require that the
location of the query term in the positive utterance x+

i be
known, but we do not require knowledge of the segmenta-
tion s+i . Therefore, unlike the algorithm in [26], our algo-
rithm can be applied without having to first compute an ar-
ticulatory forced alignment for the utterance. In computing
fw(x+

i , vi) we restrict the search to only those segmentations
s that begin and end at the appropriate times: fw(x+

i , vi) =
maxs∼(s+i ,e+i ) w ·φ(x

+
i , vi, s). In computing fw(x−i , vi), we

search over all possible start and end times.
For additional algorithmic details, including pseudocode,

see [3]. Note that this approach differs significantly from
other recent work on discriminatively trained AF-based mod-
els since our models are applied to a prediction task involving
acoustics (as opposed to lexical access as in [20, 21]).

4. EXPERIMENTS

We conduct experiments on the Switchboard corpus [28] of
conversational speech. To facilitate comparison with our pre-
vious phone-based STD work, we use the same experimental
setup as in [3]. We compare performance obtained by training
on four sets of increasing size containing 500, 1000, 2500,
and 5000 utterances selected from Switchboard sets 23-49;
each larger set contains all utterances from the smaller set.
A development set of 40 terms is used for parameter tuning,
and results are reported on a test set containing 60 terms. For
each term in the development and test sets, we consider 20 ut-
terances containing the term (positive utterances) and 20 ut-
terances that do not contain the term (negative utterances),
drawn from Switchboard sets 20-22. Initial and final silences
are removed from all utterances.3

To define the training set, we begin by identifying each
instance of a word containing at least five phonemes in its
canonical pronunciation as a candidate term vi and consider-
ing the corresponding utterance as a positive example for that
term x+

i . We randomly select an utterance x−i that does not
contain vi to serve as a corresponding negative example for
the term. The chosen training pairs are identical to those used
in the experiments reported in [3].

Following [3], we parameterize the acoustics using 12th

order PLP coefficients with energy, deltas, and double-deltas
to obtain a 39-dimensional input representation (X ⊆ R39).
We train four multi-layer perceptrons (MLPs): three to pre-
dict lip state (L, 5 labels), tongue state (T, 25 labels), and
glottis-velum state (G, 10 labels); and one to predict phone
labels. We train the MLPs on all of the transcribed STP data
corresponding to Switchboard sets 23-49 using the QuickNet
toolkit [29]. We concatenate each frame of PLP coefficients
with the four preceding and succeeding frames to form a 351-
dimensional input representation for the MLPs. The MLPs
are single hidden layer feed-forward networks trained to op-
timize a cross-entropy criterion, with the number of hidden
layer nodes determined by tuning on a held-out portion of the
training data. Once the MLPs have been trained, we compute
log-posteriors from the nets, concatenate them, and project
the resulting features onto the top 39 principal components
to obtain a tandem feature representation [30] that forms the
feature functions ξ(x), to which we append a constant bias
term (so that |ξ(x)| = 40). These feature functions are used
in our discriminative STD systems and as acoustic features in
our GMM-HMM baselines.

We compare against two HMM-based baseline systems
trained using HTK [31]. Our baselines are constructed by
concatenating 3-state HMM models representing the query
term phones in parallel with a garbage model containing every
other phone model. We consider both a context-independent
monophone baseline (HMM-mono) and a context-dependent

3Details of the utterances and query terms used in these experiments can
be found at http://www.ttic.edu/keshet/Keyword Spotting.html.
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System 500 1000 2500 5000
HMM-mono 0.810 0.827 0.846 0.857

HMM-tri 0.828 0.855 0.899 0.920
Disc-Phone [23] 0.874∗ 0.901∗ 0.917 0.933∗

Disc-AF-0 0.885∗,† 0.897∗ 0.914 0.937∗

Disc-AF-1 0.888∗,† 0.898∗ 0.915 0.939∗,†

Disc-Phone-AF-1 0.891∗,† 0.905∗ 0.920∗ 0.940∗,†

Table 1. AUC averaged over 60 query terms in the test set
for systems trained on 500-5000 utterances. ∗, † = significant
(p ≤ 0.05) improvement over HMM-tri and Disc-Phone, re-
spectively, using a 1-tailed Wilcoxon signed-ranks test.

word-internal triphone baseline (HMM-tri). Output distri-
butions are modeled as GMMs, with the number of mixture
components determined by tuning on the development set.
In both cases, we trade off between true positives and false
positives by varying the term insertion probability. A term
is detected if the 1-best Viterbi decoding hypothesis passes
through the HMMs representing the term. By varying the
term insertion probability, we can generate the ROC, and
therefore the AUC, for each term. We also compare to a
discriminative phone-based baseline system with 3 states per
phone (Disc-Phone, referred to as SystemB in [3]).

We compare the baseline systems against our AF-based
discriminative systems allowing either one state of asyn-
chrony (Disc-AF-1; M = 1) or no asynchrony (Disc-AF-0;
M = 0), and assigning 3 states per AF label. We note that the
system with no asynchrony is not identical to a discrimina-
tive phone-based system (as in [3]), because of the different
feature maps. Our results are summarized in Table 1.

5. DISCUSSION AND ANALYSIS

All of the discriminative systems significantly outperform the
monophone HMM baseline. For all training set sizes except
2500, the discriminative systems also outperform the context-
dependent HMM baseline. This is particularly encouraging,
because our discriminative systems are context-independent.
It is fairly straightforward to add context dependence to our
discriminative models; we leave this as future work.

The AF-based systems significantly outperform the phone-
based discriminative system in the lowest-data case (p <
0.025). In the highest data case, the difference between Disc-
AF-1 and Disc-Phone is at a significance level of p = 0.033.
The AF-based system with asynchrony (Disc-AF-1) slightly
outperforms the synchronous system (Disc-AF-0) across data
set sizes, but the differences are insignificant. Combining
phone and AF-based models (Disc-Phone-AF-1), i.e.
fw(x, v) = max

sP,sAF
wPφP(x, v, sP) +wAFφAF(x, v, sAF) (5)

where we constrain sP and sAF to have the same start and
end times, and the weights wP and wAF are initialized us-
ing the trained models Disc-Phone and Disc-AF-1 and then
trained discriminatively, improves further, significantly out-
performing HMM-tri in every case and the discriminative

Fig. 2. Fraction of hypothesized asynchronous states
vs. “canonicalness” of the pronunciation, for the 100 query
terms in the development and test sets in the 5000-utterance
condition. The line is the best linear fit to the data, showing
an overall tendency to hypothesize more asynchrony for terms
with less-canonical pronunciations.

phone-based system in the lowest- and highest-data cases.
We further analyze the behavior of the Disc-AF-1 system

trained on 5000 utterances to understand when it hypothesizes
asynchrony. We computed unconstrained phonetic decodings
using the HMM-mono system on the portion of the positive
utterances corresponding to the query term. The phonetic ac-
curacies of these decodings against the canonical pronuncia-
tions give a rough measure of pronunciation variation in utter-
ances of that term. We also examined the segmentations hy-
pothesized by the AF-based system to determine the percent-
age of states that are asynchronous. Fig. 2 shows this percent-
age vs. the “canonicalness” measure for each keyword, and
suggests that, as expected, the AF-based system is hypoth-
esizing asynchrony for utterances with higher pronunciation
variation.

6. CONCLUSIONS

We have presented an articulatory feature-based model for
STD, motivated by the challenges of low-resource and con-
versational settings, trained discriminatively to optimize
a task-specific criterion. In experiments on low-resource
Switchboard STD, the proposed system outperforms our pre-
vious phone-based STD system [3] in the lowest and highest
data setting, outperforms a context-dependent HMM baseline
across multiple training set sizes, and performs better still
when combined with our discriminative phone-based model.

In future work, we would like to incorporate context
dependence in our models in order to further improve per-
formance, to consider additional feature maps, to explore
discriminative optimization of other criteria such as the
figure of merit (FOM) [32] or actual term-weighted value
(ATWV) [33], and to test on low-resource languages. While
the approach is intended for low-resource settings, it would
be interesting to compare performance to other previously
published results on, e.g., NIST06 STDEVAL.

8290



7. REFERENCES

[1] D. R. H. Miller, M. Kleber, C.-L. Kao, O. Kimball,
T. Colthurst, S. A. Lowe, R. M. Schwartz, and H. Gish, “Rapid
and accurate spoken term detection,” in Proc. Interspeech,
2007.

[2] D. Vergyri, I. Shafran, A. Stolcke, R. R. Gadde, M. Akbacak,
B. Roark, and W. Wang, “The SRI/OGI 2006 spoken term
detection system,” in Proc. Interspeech, 2007.

[3] R. Prabhavalkar, J. Keshet, K. Livescu, and E. Fosler-Lussier,
“Discriminative spoken term detection with limited data,” in
Symposium on Machine Learning in Speech and Language
Processing (MLSLP), 2012, Online: http://www.ttic.edu/
sigml/symposium2012/papers/prabhavalkar mlslp2012.pdf.

[4] D. McAllaster, L. Gillick, F. Scattone, and M. Newman, “Fab-
ricating conversational speech data with acoustic models : A
program to examine model-data mismatch,” in Proc. ICSLP,
1998.

[5] M. Weintraub, K. Taussig, K. Hunicke-Smith, and A. Snod-
grass, “Effect of speaking style on LVCSR performance,” in
Proc. ICSLP, 1996.

[6] K. Livescu, E. Fosler-Lussier, and F. Metze, “Subword model-
ing for automatic speech recognition: Past, present, and emerg-
ing approaches,” Signal Processing Magazine, vol. 29, no. 6,
pp. 44–57, 2012.

[7] M. Ostendorf, “Moving beyond the ‘beads-on-a-string’ model
of speech,” in Proc. ASRU, 1999.

[8] D. Jurafsky, W. Ward, Z. Jianping, K. Herold, Y. Xiuyang, and
Z. Sen, “What kind of pronunciation variation is hard for tri-
phones to model?,” in Proc. ICASSP, 2001.

[9] S. King, J. Frankel, K. Livescu, E. McDermott, K. Richmond,
and M. Wester, “Speech production knowledge in automatic
speech recognition,” The Journal of the Acoustical Society of
America, vol. 121, no. 2, pp. 723–742, 2007.

[10] L. Deng, G. Ramsay, and D. Sun, “Production models as
a structural basis for automatic speech recognition,” Speech
Communication, vol. 33, no. 2–3, pp. 93–111, 1997.

[11] S. King, T. Stephenson, S. Isard, P. Taylor, and A. Strachan,
“Speech recognition via phonetically-featured syllables,” in
Proc. Workshop on Phonetics and Phonology in ASR “Phonus
5”, 2000.

[12] R. C. Rose, J. Schroeter, and M. M. Sondhi, “The potential role
of speech production models in automatic speech recognition,”
Journal of the Acoustical Society of America, vol. 99, no. 3, pp.
1699–1709, 1996.

[13] K. Kirchhoff, G. A. Fink, and G. Sagerer, “Combining acoustic
and articulatory feature information for robust speech recogni-
tion,” Speech Communication, vol. 37, no. 3-4, pp. 303 – 319,
2002.

[14] K. Livescu, J. Glass, and J. Bilmes, “Hidden feature models
for speech recognition using dynamic Bayesian networks,” in
Proc. Eurospeech, 2003.

[15] V. Mitra, H. Nam, C. Y. Espy-Wilson, E. Saltzman, and
L. Goldstein, “Gesture-based dynamic Bayesian network for
noise robust speech recognition,” in Proc. ICASSP, 2011.
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