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ABSTRACT

The paper describes a state-of-the-art spoken term detection system
in which significant improvements are obtained by diversifying the
ASR engines used for indexing and combining the search results.
First, we describe the design factors that, when varied, produce com-
plementary STD systems and show that the performance of the com-
bined system is 3 times better than the best individual component.
Next, we describe different strategies for system combination and
show that significant improvements can be achieved by normalizing
the combined scores. We propose a classifier-based system combi-
nation strategy which outperforms a highly optimized baseline. The
system described in this paper had the highest accuracy in the 2012
DARPA RATS evaluation.

Index Terms— spoken term detection, keyword spotting, audio
indexing, system combination

1. INTRODUCTION

Finding a spoken or written term in a collection of audio recordings
is a fundamental problem in automatic speech processing. By term
(or keyword) we mean a word or a sequence of words. Research
in spoken term detection (STD) has been substantially advanced by
competitive evaluations. The first evaluation was the NIST STD
2006 evaluation [1], in which participants built systems for English,
Arabic and Chinese. Recently, there is renewed interest in evaluating
spoken term detection systems in a variety of languages and audio
conditions. In the DARPA RATS (Robust Automatic Transcription
of speech) program, existing Arabic Levantine telephone conversa-
tions are retransmitted through 8 different communication channels
with different degrees of noise and channel distortion. One of the
four RATS tasks is keyword search on this highly degraded speech.
In this paper we describe the system we deployed in the first RATS
evaluation, which was held in February 2012. We also present im-
provements obtained after the evaluation by replacing a linear com-
bination with a classifier-based combination strategy. There are three
main contributions in this paper. (1) To our knowledge, this is the
first use of diverse ASR systems for improving STD performance.
We deliberately design diverse and complementary ASR compo-
nents (i.e., front ends, acoustic models, etc.), while the level of diver-
sification in prior work is limited to combining STD systems which
use word and sub-word models [2, 3, 4, 5, 6]. (2) We describe a score
normalization technique which results in significant STD improve-
ments. (3) We present a novel classifier-based combination method
for merging STD results. In this paper we use a pre-indexed system
in which the audio to be searched is indexed without prior knowledge
of the query terms. This approach is beneficial when large amounts
of audio are to be searched interactively. The same index is used
for both in-vocabulary (IV) and out-of-vocabulary (OOV) queries;
the only difference between IV and OOV searches is the degree of
query expansion.

In Section 2 we describe the evaluation data and metrics. In Sec-
tion 3 we describe our WFST-based indexing and search system, as
well as various system combination strategies. The ASR systems
used for indexing are described in Section 4. In Section 5 we de-
scribe the system used in the 2012 DARPA RATS evaluation, as well
as a number of alternate architectures. We conclude in Section 6.

2. DATA AND METRICS

All the training and test sets for the DARPA RATS program are pro-
vided by the LDC (Linguistic Data Consortium) [7, 8]. Much of
the clean speech data is existing Fisher Levantine data that was re-
purposed for the RATS program. To introduce signal degradation,
the clean speech was transmitted through eight different radio chan-
nels, labeled A–H and corresponding to different transmitter/receiver
pairs, and then recorded. The clean data contained about 150 h of
audio, but only about 65 h was labeled as speech. In the end, for
acoustic model training, we defined a 251 h noisy speech (N) train-
ing set and a 310 h noisy plus clean (N+C) set.

To train the language model, we used only the transcripts cor-
responding to the 65 h of clean speech (about 500K words) because
the transcripts for the other channels are exactly the same.

The probability of miss (pMiss) is defined to beP
i #times keyword i is missedP
i #occurrences of keyword i

. The probability of false alarm (pFA)

is defined to be #false alarms
#total words×#keywords

. In the Phase 1 DARPA
RATS evaluation, the goal is to minimize pFA at an operating point
of 30% pMiss; this metric is denoted pFA@30%pMiss.

We will report results on two sets dev-1 and dev-2. dev-1 is
the development data consisting of 219 keywords to search in 2.4 h
of audio. dev-2 is the evaluation test data and consists of 200 words
to search in 34.2 h of audio.

3. KEYWORD SEARCH SYSTEM OVERVIEW

In this section we describe our overall keyword search framework,
which runs many STD systems in parallel and combines the results
to produce a ranked list of term occurrences. Each STD compo-
nent follows the transcribe-and-match strategy in which the audio
is processed by an ASR system that produces a word lattice for
each audio segment. The lattices are converted to a WFST-based
index [9, 10, 11] that is used to find the location and score of a de-
tection. The STD components differ only in their ASR models and
keyword pre-processing methods.

3.1. Lattice Pre-processing

Prior to indexing and search, the word lattices are converted into
phonetic WFSTs in which the input labels are phones, the output
labels are the starting times of phones, and the costs are phone neg-
ative log posteriors. The resulting utterance WFSTs are used (1) as
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the starting point for creating the index, and (2) for retrieving the
time marks of the hits during the search phase.

3.2. Indexing

The algorithm for converting the utterance WFSTs obtained in the
previous step to a WFST index is described in [9]. The steps are as
follows: (1) The time information is eliminated from the utterance
WFSTs. (2) For each utterance WFST, a new start node S is created
and connected to all the original nodes n. The weight of the arc
from S to n is the posterior probability of reaching node n from
the original start node s of the WFST (i.e. shortest distance in log
semiring between s and n). The input and output labels of the arc
from S to n are both epsilon. (3) For each utterance WFST, a new
end node E is created and all the original nodes n are connected to
it. The weight of the arc from n to E is the posterior probability of
reaching the end node e of the original WFST from n (i.e. shortest
distance in log semiring between n and e). The arc from n to E
has as input label epsilon and output label the lattice id. The index
WFST is the union of all the utterance WFSTs.

3.3. Search

In WFST-based keyword search, the query WFSA is constructed us-
ing the pronunciation dictionary for IV queries and a letter-to-sound
model for OOV queries. Multiple pronunciations are compactly rep-
resented in the WFSA. In our Levantine Arabic system, the pronun-
ciations are grapheme based: the pronunciation of a word is its letter
sequence. Therefore, the pronunciations for both IV and OOV words
can both be generated in the same way, which we represent as let-
ter to sound transducer L2S. A fuzzier search, which may improve
recall while degrading precision, can be accomplished using query
expansion. Specifically, we estimate the probabilities of phone-to-
phone confusions and create a confusability model implemented as
the phone-to-phone transducer P2P . Given a query q, the query
WFSA Q is obtained via composition:

Q = nbest(q ◦ L2S ◦ P2P ) (1)

Varying the number of hypotheses kept after the composition
(NbestP2P ) controls the degree of query expansion, trading off be-
tween precision and recall.

3.3.1. Training a Phone Confusability Transducer

The phone confusability transducer should model the behavior of the
ASR system when it is used to index new audio data. Thus, it is im-
portant to collect the confusability statistics on data that was not used
for ASR training. For this work, we used two 10-hour subsets of the
clean (transmitted) training audio, training separate models on each
10-hour subset, and then collecting statistics for each model on the
other 10-hour subset. The acoustic model was a deep neural network
model taking 13 frames of 40-d PLP+LDA+STC features as input,
containing four hidden layers of 512 hyperbolic tangent units each,
and estimating posterior probabilities for 144 context-independent
HMM state targets. When we collected statistics for the confus-
ability model, we collected counts for each frame in the test data.
The reference labels were computed using forced alignment. The
hypothesized labels were computed by running speech recognition
followed by forced alignment.

3.3.2. Producing the final hit list

We use a 2-step search [12, 11] in which we first find the lattices
containing the query through composition of the query WFST Q
with the index and then use the relevant utterance WFSTs from Sec-
tion 3.1 to obtain the start and end time information for the hits. [10]
proposes a 1-pass retrieval which improves the search time at the
cost of a larger index, but we decided to use the 2-pass approach.

3.4. STD system combination

After producing a list of hits and the associated scores (posterior
probabilities) for each STD branch, the results are merged. We ex-
plore two different methods: (1) linear combination of the scores fol-
lowed by a normalization step, which is the method used in the RATS
evaluation; and, (2) classifier-based combination, which was devel-
oped after the evaluation and found to produce significantly better
results.

3.4.1. Basic method

First, we describe the fusion method used in the RATS evaluation.
For each keyword, we take the union of all hits from all systems
and then produce a final list using the following procedure: (1) a
hit which does not overlap with any other hit is copied to the final
list, while (2) a set of overlapping hits corresponding to the same
keyword is merged into one hit in the final list which has the time
marks of the highest scoring hit and a score that is the sum of the hit
scores. After producing the new list of hits, we normalize the scores
per keyword: for each keyword we sum all the scores for all the hits
and divide each score by this sum. A variant of this normalization
scheme (in which the min was shifted to 0) was proposed for IR data
fusion in [13]. This is the first time this method is used for STD and
shown to produce significant improvements.

3.4.2. Maximum Entropy based system combination

After the evaluation we implemented classifier-based system com-
bination. The classifier is a conditional, maximum-entropy model.
The input to the MaxEnt classifier is the merged hit list with the asso-
ciated total scores from the previous section. For each hit in this list
we consider three types of features: (1) keyword specific features,
namely the number of phones and number of words; (2) system spe-
cific features, namely the system score and rank of the score among
all the hits for a specific keyword; and (3) general features, namely
the number of systems voting for a hit, the rank of the duration across
all hits, and the total score after combining using the basic method.
Except for the system scores and the total score, all the other features
have discrete values. We discretize the continuous values features by
binning into k equal bins, where k is optimized. Other binning meth-
ods had similar performance. Based on these features, the MaxEnt
classifier produces a new score for each hit in the merged list. The
final score is computed by multiplying the maximum-entropy score
with the original total score.

4. DIVERSITY FOR INDEX BUILDING

Our approach to keyword search is to produce hit lists using differ-
ent indexes and combine the results. We achieve index diversity in
four ways: (1) acoustic model type, which can either be a Gaussian
mixture model (GMM) or deep neural network (DNN); (2) decoding
algorithm, which can be either dynamic or static; (3) audio segmen-
tation technique; and (4) training data set, which can either use only
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Channel A B C D E F G H
GMM-U 54.1 57.8 56.6 63.3 70.3 60.4 60.5 64.9
GMM-V 57.4 59.5 59.6 66.7 73.0 61.2 63.1 67.5
DNN 55.6 71.7 63.4 61.0 80.5 65.2 50.7 76.2

Table 1. Word error rates for GMM-U, GMM-V and DNN acoustic
models on dev-1.

noisy data (N), or combine the noisy and clean data (N+C). All in-
dexes are produced using the same language model, a 3-gram model
with modified Kneser-Ney smoothing [14], and a 37K vocabulary.

4.1. Acoustic Models

4.1.1. Gaussian Mixture Models (GMM) U and V

Similar to our GALE system [15], we built two GMM acoustic mod-
els: a conventional unvowelized model (GMM-U) and a Buckwalter
vowelized model (GMM-V). We added the vowelized model as a
source of system diversification for keyword search. The frontend
features for both models are based on VTL-warped PLP features
and a context window of 9 frames. We apply speaker based cepstral
mean and variance normalization, followed by an LDA transform
to reduce the feature dimensionality to 40. The ML training of the
acoustic model is interleaved with estimation of a global semi-tied
covariance (STC) transform. FMLLR speaker adaptation is applied
both in training and testing, while MLLR regression trees are applied
only during run-time. The total number of Gaussian components is
120, 000, distributed over 7000 quinphone context-dependent states.
Feature- and model-level discriminative training uses the boosted
MMI (bMMI) [16] criterion. The first two rows in Table 1 show the
word error rates (WER) on dev-1 for our discriminatively-trained
GMM systems.

4.1.2. Deep Neural Network (DNN) Model

We developed a deep neural network (DNN) acoustic model for the
RATS Levantine Arabic keyword search task. The DNN acoustic
model uses a feature processing pipeline similar to that used for
the GMM-U and GMM-V acoustic models, with the primary dif-
ferences being a Mel filterbank that only passes frequencies be-
tween 250–3000 Hz and no VTLN. The LDA+STC transform and
speaker-dependent FMLLR transforms are inherited from an auxil-
iary GMM acoustic model that is independent of the GMM-U and
GMM-V models. The DNN takes 13 consecutive frames of 40-d
PLP+LDA+STC+FMLLR features as input, contains four hidden
layers of 512 hyperbolic tangent units each, and estimates poste-
rior probabilities for 4096 quingrapheme context-dependent HMM
states. It therefore contains 3.2M trainable parameters.

The DNN model is initialized with random weights, using the
normalized pinitialization proposed in [17]. Following initializa-
tion, the DNN is trained using stochastic gradient descent with a
cross-entropy (CE) loss function. Following cross-entropy training,
the DNN is trained in a sequence-discriminative fashion, using the
state-level minimum Bayes risk (sMBR) criterion and a distributed
implementation [18] of Hessian-free training [19]. The WER of this
system is shown in the last row of Table 1.

4.2. Decoding Strategies

We used two different decoders and lattice generation strategies. The
first decoder (static) is based on a fully precompiled search network
that is heavily optimized at “compile” time. The decoder generates
lattices using a small LM and then rescores them with the full LM.
Lattice generation is done by propagating multiple search tokens cor-
responding to different LM histories during the forward pass. At
merge points, only the top N tokens (or backpointers) are kept.

In the second decoder (dynamic) the language model is applied
dynamically. The search network, representing the search vocab-
ulary, is precompiled at the HMM level, with sharing of common
prefixes and suffixes. Lattice generation for the dynamic decoder is
a conversion of the backpointer table to a lattice. We create extra
arcs between matching backpointers (those with the same start and
end times and cross-word context). Two criteria are used to limit the
number of arcs: beam pruning based on the arc posterior and rank
pruning that limits the number outgoing arcs per lattice state. This
approach produces very rich lattices with minimal overhead (less
than 10%) over regular Viterbi search. More decoder details can be
found in [20].

4.3. Audio Segmentations

The first audio segmentation variant (S1) is a combination of multi-
ple audio segmentations, all of which are based on Viterbi decoding
with 3 states corresponding to speech, silence and no-transmission.
These segmentations differ in their acoustic models and features.
The first approach uses channel-dependent GMMs and neural net-
works trained on a 40-dimensional LDA feature space obtained by
projecting consecutive PLP cepstra within a time window of ±4
frames. Both GMMs and neural networks are estimated with BMMI
using an asymmetric loss that only penalizes false alarms. During
segmentation, the scores from the GMMs and the neural networks
are log-linearly combined at the frame level. Similar to [21], chan-
nel detection is performed by selecting the channel with the highest
likelihood after decoding with a set of 8 GMMs trained with maxi-
mum likelihood. The second segmentation variant (S2) is based on
the same Viterbi decoding, but uses 2 states corresponding to speech
and non-speech. Another difference is that the segmentation models
are derived from a full-resolution channel- and speaker-independent
acoustic model via k-means clustering. 512 Gaussians are used for
the speech model and 12 for the non-speech model. The third seg-
mentation (S3) is nearly identical to S2, save for the tuning strategy.

5. EXPERIMENTAL SETUP

In this section we describe two systems: 1) the system we deployed
in the RATS 2012 evaluation with some additional post-eval im-
provements and 2) a simpler system more appropriate for an opera-
tional scenario.

5.1. Evaluation System

In the evaluation we combined the 5 systems shown in Table 2. The
first 4 columns refer to the dimensions of variability described in the
previous section. The last column shows the value of NbestP2P
that was used for in-vocabulary keyword search. For OOV queries,
all systems use NbestP2P = 10000. As mentioned in Section 2,
the evaluation metric is pFA@30%pMiss. After combining sys-
tems using the basic method and thresholding the results to achieve
pMiss=30%, the result was pFA=0.07 on dev-1 and pFA=0.22 on
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System AM Segmentation Decoding Data NbestP2P
Sys1 GMM-V S1 dynamic N 50
Sys2 DNN S1 dynamic N 1
Sys3 GMM-V S2 static N 50
Sys4 GMM-U S2 dynamic N+C 1
Sys5 GMM-U S3 static N+C 1

Table 2. The 5 systems used in the RATS evaluation

dev-1 A B C E F G H ALL
pMiss 18.8 32.4 41.9 39.6 25.3 30.3 22.8 30.0
pFA 0.07 0.07 0.06 0.08 0.07 0.06 0.07 0.07
dev-2 A B C E F G H ALL
pMiss 30.0 43.6 40.9 29.3 19.0 10.9 50.6 30.0
pFA 0.32 0.29 0.18 0.31 0.19 0.14 0.18 0.22

Table 3. Per channel performance of the 5-way STD system on
dev-1 and dev-2 using the basic combination method.

dev-2. Table 3 gives more details of the performance per channel
at this operating point. If we do not normalize the combined scores,
the resulting system is significantly worse: pFA=0.18 on dev-1 and
pFA=0.45 on dev-2.

Sys1 Sys2 Sys3 Sys4 Sys5 ALL
dev-1 0.38 0.28 0.34 0.24 0.26 0.07
dev-2 0.88 0.80 0.85 0.71 0.74 0.22

Table 4. pFa@30%pMiss for the system components and the final
combined system.

The lattices used in the 5 systems have been heavily pruned and
are ten times smaller than what we usually use for speech recog-
nition. We discovered that this design decision not only improved
the performance of the combined system, but also significantly re-
duced the size of the final index and consequently the retrieval time.
But due to the small lattice size, the probability of Miss is increased
and none of the systems reaches pMiss=30% even when keeping all
the hits. To better quantify the improvement over the single sys-
tem components, we measured the individual performances without
heavy pruning. Table 4 shows that the combined system is 3 times
better than the best component on both dev-1 and dev-2.

The MaxEnt system combination requires a training set and a
heldout set for optimizing k, the number of bins. Given that dev-2
is the evaluation data, we used dev-1 for training. We initially split
dev-1 into 70% training and 30% heldout, but after finding the op-
timal value of k = 10, we used all of dev-1 for training the MaxEnt
classifier. The new combination method results in pFA@30%pMiss
= 0.18 on dev-2 which is 20% better than the baseline evaluation
system.

5.1.1. Simpler Architecture

Having in mind an operational scenario, we investigated simpler al-
ternatives to the evaluation system. Table 5 shows a 2-way com-
bination, in which only the acoustic models and search strategies
are different. Due to the fact that a 2-way combination would pro-
duce significantly fewer hits, if we want to be able to produce a

System AM Segmentation Decoding Data NbestP2P
Sys1 GMM-U S1 static N + C 1000
Sys2 DNN S1 dynamic N 1000

Table 5. Simpler Architecture

Eval System Simplified System
dev-1 0.07 0.11
dev-2 0.22 0.34

Table 6. pFa@30%pMiss comparison between the evaluation sys-
tem and the simpler 2-way combination.

full ROC curve we can either enlarge the lattices or use a higher
NbestP2P . We explored both alternatives and found that it is bet-
ter to increase NbestP2P from both a computational point of view
and performance-wise. Large lattices produce big indexes which are
time consuming to produce and search. By increasing the number of
alternate paths we keep in the query WFSA we insure more hits with
no cost for indexing and minimal computational cost for retrieval.
Empirically we found NbestP2P=1000 to be good for both IV and
OOV words. Table 6 shows the comparison between the evaluation
system and the simpler one. Consider packaging the whole system
in a 12-core machine: it would be better to use the simpler system,
which takes 25xRT for indexing, versus 100xRT for the 5-system
combination. Note that search is not the bottleneck, and its latency
for even the 5-system combination is small.

6. CONCLUSION

In this paper we present a state-of-the-art STD system which ben-
efits substantially from diversifying the indexes and combining the
results. The key messages we want to highlight are:

1. Diversifying acoustic models, search strategies, audio seg-
mentations produces very different results for each STD com-
ponent, generating significant improvements after combina-
tion. This approach works on tasks other than RATS: a simi-
lar methodology has been applied successfully in the context
of the IARPA BABEL program [22] for a Cantonese STD
task.

2. The fact that we combine many STD systems allows us to
produce much smaller indexes, resulting in a faster retrieval.

3. Combining the results of different STD systems is much more
beneficial than combining different acoustic models to pro-
duce a single STD output.

The final combined system is 3 times better than the best compo-
nent, and additional improvements can be obtained by replacing lin-
ear combination with classifier-based combination. In the future, we
will explore additional features and sample weighting schemes for
the classifier-based system combination.
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