LANGUAGE MODEL VERBALIZATION FOR AUTOMATIC SPEECH RECOGNITION

Hagsim Sak, Frangoise Beaufays, Kaisuke Nakajima, Cyril Allauzen

Google
{hasim,fsb,kaisuke,allauzen} @ google.com

ABSTRACT

Transcribing speech in properly formatted written language presents
some challenges for automatic speech recognition systems. The
difficulty arises from the conversion ambiguity between verbal and
written language in both directions. Non-lexical vocabulary items
such as numeric entities, dates, times, abbreviations and acronyms
are particularly ambiguous. This paper describes a finite-state trans-
ducer based approach that improves proper transcription of these
entities. The approach involves training a language model in the
written language domain, and integrating verbal expansions of vo-
cabulary items as a finite-state model into the decoding graph con-
struction. We build an inverted finite-state transducer to map written
vocabulary items to alternate verbal expansions using rewrite rules.
Then, this verbalizer transducer is composed with the n-gram lan-
guage model to obtain a verbalized language model, whose input
labels are in the verbal language domain while output labels are in
the written language domain. We show that the proposed approach
is very effective in improving the recognition accuracy of numeric
entities.

Index Terms— language modeling, verbalization, finite-state
transducer, speech recognition

1. INTRODUCTION

Automatic speech recognition (ASR) systems need to transcribe ver-
bal language into properly formatted written language for presenta-
tion to the user. This is difficult. First, lexical and non-lexical vocab-
ulary items need to be converted to their pronunciations for phonetic
acoustic modeling. Second, the format of the raw output from the
speech decoder depends on the choice of vocabulary units used for
language modeling. Third, there is ambiguity in converting between
verbal and written language in both directions.
Consider for example the following verbal transcript:

“ten wall street apartment forty five eighty one new
york new york one hundred twenty five”

Transcribing this utterance properly is an ambiguous task. The
conversion of numeric entities to written form is especially non-
deterministic. For instance, one can transcribe the numeric entities in
verbal or written domain, e.g. “one” vs “1”. Also, the proper format
depends on the application domain. For example, some words can
be abbreviated or replaced by an acronym depending on the appli-
cation, e.g. “NY”. Finally, the correct transcription can also depend
on real world knowledge such as the existence of an address in the
transcribed format. In this example, “forty five eighty one” can be
realized as “4581” or “45 81”. A proper written transcription of
this utterance for a voice-search-enabled maps application may be
as follows:

“10 Wall St. Apt. 4581 New York, NY 10025”

978-1-4799-0356-6/13/$31.00 ©2013 IEEE

8262

In an ASR system, the formatting of transcripts is generally de-
termined by a combination of pre-processing of the language model
training text, language modeling approach, and post-processing of
the recognition transcripts. One can think of three main approaches
to handle transcript formatting.

In the first approach, verbal-domain language modeling, all non-
lexical vocabulary items are expanded to their verbal forms by pre-
processing the language model training data using text normalization
rules [1, 2]. Hence, the language model is trained on verbalized text
similar to the above verbal transcript and the speech recognition tran-
scripts are in verbal form as well. The recognition transcripts thus
need to be converted to proper written language for presentation to
the user. This requires using inverse text normalization rules and/or
rescoring techniques, possibly with class-based language models as
in [2]. This approach has some disadvantages. The pre-processing
is an ambiguous text normalization process and it loses written lan-
guage formatting information. The post-processing is also ambigu-
ous and using rescoring techniques to disambiguate alternate tran-
scripts in written language complicates the system, especially when
combined with class-based models.

The second approach relies on class-based language model-
ing [3] to model non-lexical vocabulary items using regular lan-
guages to represent classes such as date, time, number [4]. There
are also some potential drawbacks to this approach, such as its in-
ability to retain contextual information in the language model for
frequently occurring class instances. Besides, the static construction
of the decoding network may not be feasible for a large number of
classes due to memory limitations, and dynamic composition during
decoding can be slow.

The third approach is written-domain language modeling. This
approach aims at retaining the written language formatting informa-
tion in the language model and leveraging the disambiguation power
of the language model to properly format the recognition transcripts
by handling the pronunciation of non-lexical vocabulary items di-
rectly in the pronunciation lexicon. This approach is attractive for
extremely large language models (with vocabulary lists on the order
of millions of words, and training corpora on the order of billion of
words [1]), since large data sizes alleviate data sparsity and out-of-
vocabulary (OOV) issues. However, it is not practical nor optimal
to handle these entities in the lexicon due to the combination of ver-
balization alternates with pronunciation alternates, and the resulting
complexity of the lexicon.

In this paper, we propose to train the language model in the writ-
ten domain, and to create a finite-state verbalization model that we
incorporate in the decoding graph by composition with the language
model. The verbalization model effectively transforms written non-
lexical items into verbal items that can be looked up in the lexicon.
The approach thereby maintains the desired richness of a written lan-
guage model, together with the simplicity of a verbal-domain lexi-
con.

ICASSP 2013

Fig. 1. Finite-state transducer for the sample rewrite grammar rule.

2. LANGUAGE MODEL VERBALIZATION

Weighted finite-state transducers (WFSTs) are widely used to rep-
resent all the components of a speech recognition system [5]. This
representation comes together with a composition algorithm that
efficiently combines all the components into a single finite-state de-
coding network. More specifically, in a finite-state transducer based
ASR system, a decoding network D is typically constructed by
composing the following finite-state models: a context-dependency
model C' mapping context-dependent phones to context-independent
phones, a pronunciation lexicon L mapping context-independent
phone sequences to words, and an n-gram language model G as-
signing probabilities to word sequences. In the WFST framework,
this is expressed as D = C o L o (G, where o is the composi-
tion operator. In this setup, the speech decoder handles decoding
over the Hidden Markov Model (HMM) states corresponding to
context-dependent phones. An alternative proposed in [6] is to
also incorporate a Hidden Markov Model H mapping HMM state
sequences to context-dependent phones into the decoding network
construction, which can be expressed as D = Ho C o Lo G. In
this work, we chose the first setup. Our implementation relies on the
OpenFst weighted finite-state transducer library [7].

2.1. Approach

In this paper, we propose to incorporate a verbal expansion of vocab-
ulary items in the construction of the decoding network. To this end,
we construct a finite-state verbalizer transducer V' that maps verbal
expansion of word sequences to vocabulary items. With this model,
the decoding network can be expressed as D = C o LoV o G. We
use grammars to expand non-lexical items such as numeric entities.
Such grammars rely on regular expressions and context-dependent
rewrite rules, and are commonly used for text processing and verbal
expansion for text-to-speech and speech recognition. They can be
efficiently compiled into finite-state transducers [8, 9].

A sample rewrite grammar rule is given below for a small set
of vocabulary items. (The rewrite rules for numeric entities can be
expressed efficiently in compact form due to the regular language
nature of these entities, rather than explicitly listing them as in the
example.)

rule = (“10” : “ten”) | (“10” : “one zero”) |
(“NY” : “new york”) | (“St.” : “street”) | (“St.” :
“saint”) ;

This sample rule can be efficiently compiled into a finite-state
transducer representation as shown in Figure 1 using a rule com-
piler [9]. We defined multiple grammar rules to verbalize various

V < vocabulary of language model
R < set of finite-state transducers for rewrite grammar rules
for allv € V do
W@
for all » € R do
w < rewrite(v, T)
if w is not empty string then
insert w into W
end if
end for
if W is @ then
W
end if
for all w € W do
add a path w — v to Visr
end for
end for
Vrest < closure(determinize(Vrsr))

Fig. 2. The verbalizer FST construction algorithm.

ten:10

one:one \
zero:zero y

Fig. 3. Example finite-state transducer V for a simple non-
determinized non-closed verbalizer model.

classes of vocabulary items and all these rules were compiled into a
set of finite-state transducers.

2.2. Verbalizer Model Construction

We use a simple algorithm to construct the finite-state transducer for
the verbalizer as shown in Figure 2. The algorithm takes as input the
vocabulary of the language model, the set of finite-state transducers
for the compiled rewrite grammar rules. It enumerates all the vo-
cabulary items and tries to rewrite each vocabulary item using each
rewrite grammar rule transducer, and accumulates these verbal ex-
pansions in a set. If there is no rule that applies to a vocabulary item,
the item itself is inserted in the set of verbal expansions. This is gen-
erally true for lexical vocabulary items, for which the lexicon can
directly produce pronunciation alternatives. To construct the verbal-
izer transducer using all possible verbal expansions for each vocab-
ulary item, we simply add paths from the start state to the final state
of the transducer with each verbal expansion for a vocabulary item
on the input label and that vocabulary item on the output label.

A simple finite-state transducer for the verbalizer model is
shown in Figure 3. The input labels are in verbal domain and the

8263

output labels are in the written domain of the language model.
Please note that verbal expansions of vocabulary items are not
context-dependent. We need a parallel corpus of sentences in writ-
ten and verbal language to learn a context-dependent verbalization
model. It also requires model smoothing to generalize verbalization
over unseen instances especially for numeric entities. The verbal-
izer can also be used to normalize capitalization for the lexicon if
capitalization is retained in the language model. Finally, it is also
possible to assign weights to the rewrite rules and in the verbalizer
model to discriminate between verbalization alternates. As seen in
this example, the verbalizer model is non-deterministic in both input
and output labels.

We use the generalized composition algorithm by Allauzen et
al. [10] to compose the verbalizer transducer V' with the language
model GG. This algorithm allows efficient composition by avoiding
the creation of useless output-epsilon paths while also optimizing
the composed model by pushing forward labels and weights for run-
time efficiency. The resulting verbalized language model can be used
with dynamic, runtime, composition in the decoder or it can be stat-
ically composed with the context-dependent lexicon to build a static
decoding network.

3. EVALUATION

We applied the language model verbalization approach to the mod-
eling of numerical entities in Google’s French speech recognition
system. This system used to rely on the written-domain language
modeling approach described in Section 1. We chose this specific ap-
plication after noticing that a large fraction of the French recognition
traffic was related to Maps entities, and that the written-domain ap-
proach was causing a lot of formatting errors on such entries. Times,
dates, and other numerical entities were also affected, and improved
as a result of this work.

In the subsections below, we first describe the number error rate
metric that we used to evaluate recognition accuracy for numeric
entities. Then, we discuss the language modeling data used in the
system. Finally, we give experimental results for various systems.

3.1. Evaluation Metric

We measure the recognition accuracy of numeric entities such as
numbers, times, and dates by evaluating a metric similar to the word
error rate (WER), but specific to numeric entities. We call this metric
the number error rate (NER). To compute the NER, we first align
the recognition hypothesis with the reference transcription. We then
assume that any word containing a digit is a numeric entity, and we
define the NER as follows:

_ ND + NI+ NS

B NN

where ND, NI, NS are the numbers of numeric deletions, insertions,
and substitutions, respectively. NN is the total number of numeric
entities in the reference.

NER

3.2. Baseline System

The baseline speech recognition engine is a standard large-vocabulary
recognizer, with PLP features and LDA. The acoustic models use
decision trees to train GMM-based triphone HMMs. The acoustic
models are trained with maximum likelihood, followed by boosted
MMI [11].

40 ;
e e sup
=@ sup + verbalized
B g e sup + unsup I
‘_ =@ sup + unsup + verbalized
36l e o sup + unsup (redecoded) |
. | = -m sup + unsup (redecoded) + verbalized
‘e,
= u.
S 341 1
5 T LY
= l.__ .-
32t & L "
301 1
281
0.4 0.6 0.8 1.0 1.2 1.4 1.6

Normalized real-time factor (CPU time / audio time)

Fig. 4. Word error rate at various normalized real-time factors.

The language model is a standard 5-gram language model
trained from web documents and anonymized Google web search
queries. Anonymized speech logs are added to the training corpora
in some of the experiments below. In all cases, the language mod-
eling pipeline trains a model for each data source, and then linearly
interpolates the individual models using a development set to opti-
mize the interpolation weights. The final model is entropy-pruned
to a size that fits our production resource targets.

3.3. Experimental Results

We used a set of rewrite grammar rules to expand numeric entities
in French. These rules were used to build a verbalizer transducer
that can generate verbal expansions for digit sequences, dates, times,
postal codes, decimal numbers, cardinal numbers, and ordinal num-
bers.

The resulting recognizer was evaluated on an anonymized and
randomly selected test set that matches our current speech traffic
patterns in France. The test set contains 22K utterances and 85K
words, of which 2K are numeric entities. The set was transcribed in
written language, i.e. the transcribers were instructed to type “23” if
they heard “vingt-trois”.

We evaluate three different systems. In the first system, (su-
pervised), we only used typed text data from web documents and
search queries to train the language model. In the second system,
(supervised + unsupervised), we added anonymized speech recog-
nition logs to the language model training data. These logs consist
of recognition results from the then-deployed system, untranscribed,
but filtered by recognition confidence. In the third system, (super-
vised + unsupervised (redecoded)), we redecoded the speech logs
using the verbalized system from the second system to generate bet-
ter transcripts. The aim of redecoding is to fix formatting errors on
numeric entities caused by the original production system.

We report the performance improvement brought by the verbal-
izer on these three systems.

Figure 4 shows the word error rate of the evaluated systems for
various real-time factors obtained by changing the beam width of
the decoder. This experiment clearly shows that using the unsuper-
vised data for language modeling improves the speech recognition

8264

e - sup
= -8 sup + verbalized
601 e.e sup + unsup
=@ sup + unsup + verbalized
o e -8 sup + unsup (redecoded)
55 e = -8 sup + unsup (redecoded) + verbalized||
_ "'o- TS
x "] @
x 50f a e e
w ~
= AR N
NN me
~ - el @ -
v el TTTTTrmrmeeen °
45l “‘IT.‘“——.‘ W
= Tl T - e _____ .
BN B - R =
401 \.“_
e m
e meoo .
33 0.6 0.8 1.0 1.2 1.4 1.6

Normalized real-time factor (CPU time / audio time)

Fig. 5. Number error rate at various normalized real-time factors.

accuracy significantly. For instance, the accuracy improves by about
12% relative at the normalized real-time recognition speed. We can
also see that language model verbalization and redecoding the unsu-
pervised data with the verbalized system does not have a significant
effect on the WER. This is expected since these experiments concen-
trate on improving the numeric entity recognition, and the numeric
entities constitute a small percentage of the test set. For example,
if we removed all the numeric entities from the speech recognition
vocabulary, the WER would only degrade about 2%.

The impact of verbalization is obvious by tracking the number
error rate, as in Figure 5. This figure clearly shows that language
model verbalization significantly improves the recognition accuracy
of numeric entities for all the systems. For instance, the best system
(supervised + unsupervised (redecoded) + verbalized) improves the
NER by about 27% over the baseline system (supervised + unsu-
pervised) at the normalized real-time recognition speed. It is also
interesting to observe that while using unsupervised data improves
the WER, it degrades the NER significantly. This is clearly due to a
high number of recognition/formatting errors in numeric entities in
the baseline system. This shows that using unsupervised data for lan-
guage modeling may pollute the training data with incorrectly tran-
scribed entities. This data can poison the system to generate more
recognition errors for these types of entities even though the WER
of the system improves. Redecoding was indispensable in this case.

4. CONCLUSION

We described a transducer-based method to handle non-lexical en-
tities in a speech recognition system. Using a finite-state model to
integrate the verbalization into the decoder network provides some
advantages. By facilitating the training of the language model in
the written domain, it prevents the error-prone conversion of written
text to the verbal domain with text-normalization rules. The written-
domain language model provides disambiguation power that simple
text-normalization rules can not include.

We showed that the language model can be efficiently verbal-
ized by simply composing it with the verbalizer transducer. The re-
sulting verbalized language model converts verbal word sequences

to written-domain word sequences. This composition can be seen
as verbalizing the language model by converting the written-domain
language model into a transducer whose input labels are verbal ex-
pansions of the output labels in the grammar. The approach allows
multiple ways of verbalizing a vocabulary item, and provides the
flexibility to insert intra-word silences where desired. The verbal-
izer simplifies the lexicon, since the verbalization is separated from
the pronunciation modeling, and the lexicon only has to deal with
the verbal word forms.

This approach improved the recognition of numerical entities in
French by almost 30% over the baseline production system, while
maintaining its latency characteristics.

5. ACKNOWLEDGEMENT

We would like to thank Richard Sproat and Martin Jansche for their
contributions to rewrite grammar library and rules, and Eugene We-
instein for his help on integration to the infrastructure.

6. REFERENCES

[1] C.Chelba, J. Schalkwyk, T. Brants, V. Ha, B. Harb, W. Neveitt,
C. Parada, and P. Xu, “Query language modeling for voice
search,” in Spoken Language Technology Workshop (SLT),
2010 IEEE, dec. 2010, pp. 127 -132.

[2] Maria Shugrina, “Formatting time-aligned ASR transcripts for
readability,” in Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics, Stroudsburg, PA, USA,
2010, HLT ’10, pp. 198-206, Association for Computational
Linguistics.

[3] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent
J. Della Pietra, and Jenifer C. Lai, “Class-based n-gram models
of natural language,” Computational Linguistics, vol. 18, no.
4, pp. 467-479, Dec. 1992.

[4] Cyril Allauzen, Mehryar Mohri, and Brian Roark, “General-
ized algorithms for constructing statistical language models,”
in Proceedings of the 41st Annual Meeting on Association for
Computational Linguistics - Volume 1, Stroudsburg, PA, USA,
2003, ACL ’03, pp. 4047, Association for Computational Lin-
guistics.

[5] Mehryar Mohri, Michael Riley, Don Hindle, Andrej Ljolje, and
Fernando Pereira, “Full expansion of context-dependent net-
works in large vocabulary speech recognition,” in Proceedings
of ICASSP 98, 1998, pp. 665-668.

[6] Mehryar Mohri and Michael Riley, “Integrated context-
dependent networks in very large vocabulary speech recog-
nition,” in Proceedings of the 6th European Conference
on Speech Communication and Technology (Eurospeech ’99,
1999, pp. 811-814.

[7] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech
Skut, and Mehryar Mohri, “Openfst: a general and efficient
weighted finite-state transducer library,” in Proceedings of the
12th international conference on Implementation and applica-
tion of automata, Berlin, Heidelberg, 2007, CIAA’07, pp. 11—
23, Springer-Verlag.

[8] Mehryar Mohri and Richard Sproat, “An efficient compiler
for weighted rewrite rules,” in 34th Annual Meeting of The
Association for Computational Linguistics, 1996, pp. 231-238.

8265

[9] Brian Roark, Richard Sproat, Cyril Allauzen, Michael Riley,
Jeffrey Sorensen, and Terry Tai, “The opengrm open-source
finite-state grammar software libraries,” in Proceedings of the
ACL 2012 System Demonstrations, Jeju Island, Korea, July
2012, pp. 61-66, Association for Computational Linguistics.

[10] Cyril Allauzen, Michael Riley, and Johan Schalkwyk, “A gen-
eralized composition algorithm for weighted finite-state trans-
ducers,” in Proceedings of Interspeech, 2009, pp. 1203-1206.

[11] D. Povey, D. Kanevsky, B. Kingsbury, B. Ramabhadran,
G. Saon, and K. Visweswariah, “Boosted MMI for model and
feature-space discriminative training,” in Acoustics, Speech
and Signal Processing, 2008. ICASSP 2008. IEEE Interna-
tional Conference on, 2008, pp. 4057 —4060.

8266

