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ABSTRACT

In this paper, we present a unified search strategy for open vo-
cabulary handwriting recognition using weighted finite state
transducers. Additionally to a standard word-level language
model we introduce a separate n-gram character-level lan-
guage model for out-of-vocabulary word detection and recog-
nition. The probabilities assigned by those two models are
combined into one Bayes decision rule. We evaluate the pro-
posed method on the IAM database of English handwriting.
An improvement from 22.2% word error rate to 17.3% is
achieved comparing to the closed-vocabulary scenario and the
best published result.

Index Terms— open vocabulary recognition, handwrit-
ing recognition, character-based language models

1. INTRODUCTION

In speech and handwriting recognition, the open vocabulary
scenario assumes that the training data covers only a part of
the entire word space. This condition leads to the encounter
of unknown words, called OOV words. The problem has
been already extensively studied mainly in the former do-
main. Most of the current approaches to solve it rely on so
called sub-lexical methods.

Bisani [1] approaches the OOV problem by using a hy-
brid lexicon consisting of word fragments and full words. Af-
ter decoding, the fragments are concatenated greedily to form
words. Vertanen [2] uses one mixed language model (LM)
with OOV words replaced by graphone sequences. Shaik [3]
decomposes words into different sub-word units, for exam-
ple morphemes and syllables. Those approaches posses how-
ever some drawbacks. If the words are decomposed into some
smaller units, the important lexical constraint is missing. In
the mixed models that include both words and sub-words, the
LM is polluted as the contexts of those two types of units in-
terfere with each other. Additionally, it is difficult to tune the
ratio of sub-words transcribed during recognition if the OOV
rate between training and development sets differs.

Another kind of approach to the problem is OOV de-
tection using confidence scores. Burget [4] tries to detect
OOV words by using combined posteriors from strongly-
and weakly-constrained systems. Lin [5] proposes to com-
pare word and phone lattices to specify candidate OOVs.
Hazen [6] introduces a generic OOV model to allow for any
phoneme sequence during recognition.

Some approaches have been also made in the domain
of handwriting recognition. Brakensiek [7] addresses the
problem with character bi-grams and tri-grams. The recogni-
tion performance is however worse compared to the closed-
vocabulary scenario. Bazzi [8] compares the recognition
results of word-based and character-based system with a hy-
brid system where the character LM has been augmented with
a word constraint.

We propose a combined probabilistic approach to the
open vocabulary handwriting recognition. We recognize
OOV words on character level by hypothesizing them as
sequences of characters. A separate character-level LM is
created and combined into the word-level LM. The combined
model enforces the word constraint in a probabilistic manner
and the mutual interaction between those two models is easy
to tune using system parameters. A similar approach has been
successful in the domain of speech recognition [9].

2. PROPOSED METHOD

2.1. Theoretical background

The goal of the recognition task is to find the word sequence
wN1 := w1, ..., wN that best explains the observation se-
quence xT1 := x1, ..., wT . This is accomplished by maxi-
mizing the posterior probability p(wN1 |xT1 ) with an unknown
number of words N . The posterior probability is modelled
by the Bayes’ decision rule:

ŵN1 = argmax
wN

1

{qγ(wN1 )p(xT1 |wN1 )} (1)
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Two stochastic models represent the probabilities appearing
in this equation. The acoustic (or visual) model p(xT1 |wN1 )
outputs a sequence of characters given a sequence of visual
observations. The language model assigns a prior probability
to the word sequence:

q(wN1 ) =

N∏
i=1

q(wi|wi−1
i−n+1) =

N∏
i=1

q(wi|hi) (2)

We compute the probability q(wi|hi) for every word in the
word space given an n-gram context hi = wi−n+1, ..., wi−1

of n − 1 previous words. The parameter γ is a scaling expo-
nent of the language model, called LM scale.

In the typical word-level LM p(wN1 ), we compute the
probability only for the known words wi ∈ V , that is those
appearing in the training data’s vocabulary. It is possible to
incorporate the probability for an unknown word into the lan-
guage model by limiting the vocabulary and substituting ev-
ery word in the training set, that is not included in the vocab-
ulary, by a special token woov . This token represents an OOV
word and is treated like any other word, which means that it
can appear in the context of an n-gram and that the probabil-
ity p(woov|h) of observing it is non-zero. However, it is not
possible to transcribe such an OOV word during recognition
because the woov token has no assigned sequence of charac-
ters in the lexicon, which means that the probability for it
cannot be calculated by the acoustic model.

The idea to overcome this problem is to simultaneously
hypothesize and recognize OOV words as sequences of sep-
arate characters. We represent the a priori knowledge of de-
pendencies between characters by a second n-gram model of
orderm on character level. It is then possible to represent any
word as a sequence of characters cM1 ∈ C∗ and compute the
probability of it as:

p(cM1 ) = δ ·
M∏
j=1

p(cj |cj−1
j−m+1) (3)

The parameter δ is an additive penalty. We denote the func-
tion that maps a word to a corresponding sequence of charac-
ters as C : V → C∗. The final language model is obtained by
combining the separate word- and character-level LMs. The
max function chooses the model that has a higher probability:

q(wi|hi) = max{p(woov|hi)pα(C(wi)), p(wi|hi)} (4)

The probability p(C(wi)) assigned by the character-level LM
is multiplied with the probability p(woov|hi) assigned by the
primary word-level LM. The parameter α is a scaling expo-
nent of the character-level LM. Both models can hypothesize
any word from the word space, but the probability for an OOV
word assigned by the word-level LM is zero. Whenever an
OOV word is transcribed as a character sequence in the recog-
nition process, it is retained in the context hi as woov . For the

purpose of word alignment and scoring, a character sequence
is merged together into one word.

This approach clearly separates the word representation
from character sequence representation in the sense that there
are two separate contexts for words and characters that do not
interfere with each other. It also allows for those two language
models to have different orders and to be created using differ-
ent discounting methods. The number of words transcribed
as character sequences during recognition can be easily tuned
using system parameters.

2.2. Decoding using WFST

We use a dynamic network decoder based on weighted finite-
state transducers (WFST) [10], which integrates the LM dy-
namically as needed during recognition. The composition of
the language model transducerG and the lexicon transducerL
is computed on demand using composition filters for on-the-
fly pushing of labels and weights [11]. The expansion from
input labels of L to HMM-states is performed dynamically
as well. A detailed description of the decoder can be found
in [12].

Here we need to integrate two LMs: the word-based LM
and a character-level LM. Both models are compiled into sep-
arate WFSTs, denoted G and Gc. In G and Gc each state qh
represents a word or character history h. An arc leaving a
state qh and labeled with a word or characterw has the weight
p(w|h).

G contains arcs labeled with the woov token. These arcs
are substituted on-demand during recognition with a copy of
Gc. An woov-arc is replaced by an arc labeled with ε (the
empty word) and weighted by the probability of the original
n-gram. It leads to the start state of a copy of Gc. The final
state ofGc is connected to the destination state of the replaced
arc. When complex LMs are used, the fully expanded LM
automaton would be too large to be kept in memory. Our
implementation is based on OpenFst [13].

3. EXPERIMENTS

3.1. Database

The IAM database [14] consist of images of handwritten En-
glish text sentences, which have been built upon the LOB
corpus [15]. There are 747 paragraphs of text for training,
116 for development, and 336 for evaluation. The language
models have been built upon the combined LOB [15], Brown
[16], and Wellington [17] corpora. We have excluded the sen-
tences appearing in IAM development and evaluation sets for
the purpose of training the language model. The training,
development and evaluation text sources contain 3, 338, 728;
8, 633 and 25, 472 running words, and the size of vocabulary
is 101, 443; 2, 396 and 5, 312 words accordingly. The char-
acter inventory contains 77 characters plus silence and noise.
We are interested in producing an open vocabulary scenario
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Table 1. OOV rates on different sets with respect to a prese-
lected vocabulary size.

Voc. size OOV rate [%]

Train Dev.
all 0 2.6

50k 1.7 3.9
20k 5.0 6.6
10k 8.9 9.6
5k 14.0 13.5
1k 28.8 25.1

100 49.1 45.8

in which OOV words exist in both training and development
sets. Therefore we limit the vocabulary to a different number
of most frequent words from the training set. Table 1 contains
the summary of OOV rates with respect to a vocabulary size.

3.2. System overview

For preprocessing, we correct the slant of gray-scale images
with a median of angle values estimated by three different
deslanting algorithms [18][19][20]. We segment the images
with a sliding window of a constant shift and width, and a
height equal to the size of the original image. A horizontal co-
sine window is applied to each frame to smooth the image on
its borders. Each frame is normalized to a size of 8×32 pixels
using 1st- and 2nd-order moments [21]. We then take gray-
scale values of all pixels and reduce their number to 20 com-
ponents using PCA transformation. The final feature vector
of size 24 is augmented by original moment values [21]. The
system is writer adaptive using CMLLR for feature transfor-
mation [22]. For classification we use an HMM model with
6 segments per character. A segment consists of 2 states with
the same emission distribution. The model is trained with the
Viterbi algorithm using maximum likelihood (ML) as train-
ing criterion. Emission distributions are trained with Gaus-
sian mixtures with a total of ∼30k densities. The parameters
have been optimized experimentally on the development set.

3.3. Language model

As word-level language model we use standard 3-gram model
with modified Kneser-Ney discounting build upon the train-
ing text source containing one sentence per line. Because we
recognize whole paragraphs of text, which contain multiple
sentences, the language model has to be able to hypothesize
the sentence boundary. For most of the experiments we use a
vocabulary composed of the 10k most frequent words which
is associated with an OOV rate of a reasonable size. On the
other hand the OOV rate is sufficiently large to observe the
results of applying the method described in this paper. The
character-level language model is build upon a list of words,
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Fig. 1. Distribution of recognition errors on OOV words from
the development set with respect to a vocabulary size.

Table 2. Comparison of results between closed and open vo-
cabulary scenarios on the development set.

Voc. OOV [%] Closed voc. [%] Open voc. [%]

WER CER WER CER
50k 3.9 14.8 5.9 12.2 4.8
20k 6.6 18.7 8.2 12.4 5.1
10k 9.6 22.0 9.0 12.8 5.1
5k 13.5 - - 13.0 5.2
1k 25.1 - - 14.3 5.6

100 45.8 - - 18.6 7.0
0 100.0 - - 21.0 7.7

one word per line, split into separate characters. The Witten-
Bell method is used for discounting. We cannot use the stan-
dard modified Kneser-Ney method because of lack of single-
tons in the training data. We discuss different approaches to
creating candidate word list in section 3.4.

3.4. Experimental results

We evaluate our method by measuring the improvement be-
tween the closed and open vocabulary scenarios. Error rates
and statistics are calculated using the Levenshtein alignment
between reference and hypothesis. The character sequences
are merged together into a word prior to aligning. The de-
coder can hypothesise the word boundary between two con-
secutive character sequences.

Table 2 shows the recognition results for different vo-
cabulary sizes. The absolute difference between results in
the open vocabulary scenario is considerably smaller than in
the closed vocabulary. Without a vocabulary the system still
maintains a very good word error rate of 21.0%. That means
that the character-level LM can learn correctly the more fre-
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Fig. 2. Error rates with respect to an order of the character-
level LM on the development set. The vocabulary size is 10k.

quent words and can substitute to some degree the lexical con-
straint enforced by the word-level LM.

Figure 1 shows the distribution of certain recognition er-
rors on the OOV words from reference. The percentage of
substitutions made by the character-level LM remains almost
constant. This suggests an upper boundary of the recogni-
tion performance of that model and indeed the number of cor-
rect matches approaches 80% with no vocabulary at all. The
percentage of substitutions made by the word-level LM de-
creases, but remains constant when measured as an absolute
number of words. Those errors are generated mainly by a
fixed list of compound words, which are transcribed as multi-
ple in-vocabulary words.

Figure 2 shows the influence of the order of character-
level LM on the recognition performance. We obtain the best
results for a 10-gram LM (12.8% WER and 5.1% CER).

Table 3 shows the results for different approaches of
choosing words to train the character-level LM. The word list
is constructed by extracting all words from the training set or
only the OOV words. Additionally the words can be weighted
or not by their frequency counts. We obtain the best results if
we choose only the OOV words with their frequency counts.

The parameters α = 0.4, γ = 20 and − log δ = 1 have
been optimized experimentally on the development set.

3.5. Comparison with the state-of-the-art

Table 4 shows the comparison of the results on the IAM
database. To make the results comparable with other groups
we use a vocabulary composed of the 20k most frequent
words. We achieve a word error rate of 17.3% on the evalua-
tion set in the open vocabulary scenario. The word error rate
of 22.2% obtained in the closed vocabulary scenario serves
as a baseline. It is also the best closed vocabulary result
published so far. The results in the lower part of the table
are the best results reported so far for IAM. España-Boquera
[23] used neural networks to perform particular preprocessing

Table 3. Comparison of results on the development set be-
tween different approaches of creating training data for the
character-level LM.

Voc. IV words OOV words WER [%] CER [%]
10k with freq. with freq. 12.8 5.2
10k w/o freq. w/o freq. 13.3 5.3
10k - with freq. 12.8 5.1
10k - w/o freq. 13.4 5.3
1k with freq. with freq. 15.0 5.9
1k w/o freq. w/o freq. 17.5 6.6
1k - with freq. 14.3 5.6
1k - w/o freq. 17.5 6.6

Table 4. Comparison with results reported by other groups
on the development and evaluation sets.

Systems Voc. WER [%] CER [%]

Dev. Eval Dev. Eval
open vocabulary 20k 12.4 17.3 5.1 8.2
closed vocabulary 20k 18.7 22.2 8.2 11.1
España et al. [23] 50k 19.0 22.4 - 9.8
Toselli et al. [24] 9k - 25.8 - -
Graves et al. [25] 20k - 25.9 - 18.2
Bertolami et al. [26] 20k 26.8 32.8 - -

steps. Toselli [24] developed an HMM-based system using
gray-scale and gradient features. Graves [25] used an LSTM
recurrent neural network with a CTC output layer. Finally,
Bertolami [26] applied a voting strategy to several HMM
models.

4. CONCLUSIONS

We have shown that the use of two combined language mod-
els significantly improves the recognition performance on an
open vocabulary handwriting recognition task. The character-
level LM can learn correctly the more frequent words and can
substitute to some degree the lexical constraint enforced by
the word-level LM. We demonstrated that the character-level
LM should be constructed using the OOVs extracted from the
training set. We also showed that higher-order character-level
LMs perform better than their lower-order equivalents. On
the IAM database our open vocabulary HMM-based system
is the best system published so far. It achieves the perfor-
mance of 17.3% word error rate on the evaluation set which
is a 4.9% WER absolute improvement over the same system
in the closed vocabulary scenario.
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