
TEMPORAL KERNEL NEURAL NETWORK LANGUAGE MODEL

YongZhe Shi, Wei-Qiang Zhang, Meng Cai and Jia Liu

Tsinghua National Laboratory for Information Science and Technology,
Department of Electronic Engineering, Tsinghua University, Beijing 100084, China

{shiyz09, caimeng06}@gmail.com, {wqzhang, liuj}@tsinghua.edu.cn

ABSTRACT

Using neural networks to estimate the probabilities of word
sequences has shown significant promise for statistical lan-
guage modeling. Typical modeling methods include multi-
layer neural networks, log-bilinear networks and recurrent
neural networks, etc. In this paper, we propose the temporal
kernel neural network language model, a variant of models
mentioned above. This model explicitly captures long-term
dependencies of words with exponential kernel, where the
memory of history is decayed exponentially. Additionally,
several sentences with variable lengths as a mini-batch are
efficiently implemented for speeding up. Experimental re-
sults show that the proposed model is very competitive to
the recurrent neural network language model and obtains the
lower perplexity of 111.6 (more than 10% reduction) than the
state-of-the-art results reported in the standard Penn Treebank
Corpus. We further apply this model to Wall Street Journal
speech recognition task, and observe significant improve-
ments in word error rate.

Index Terms— language modeling, temporal kernel neu-
ral network, speech recognition

1. INTRODUCTION

Statistical language models (LMs) estimate the probability of
a word occurring in a given context, which plays an important
role in many practical applications such as automatic speech
recognition and machine translation. Having been used for
several decades, n-gram models are still the cornerstone of
modern language modeling for their simplicities and efficien-
cies. Standard n-gram back-off LMs rely on a discrete rep-
resentation of the vocabulary, where each word is associated
with a discrete index and the morphological, syntactic and
semantic relationships which structure the lexicon are com-
pletely ignored. N-gram models rely on Markovian assump-
tion. Despite this simplification, the maximum likelihood

This work was supported by National Natural Science Foundation of
China under Grant No. 90920302, No. 61005019 and No. 61273268, and in
part by Beijing Natural Science Foundation Program and Scientific Research
Key Program of Beijing Municipal Commission of Education under Grant
No. KZ201110005005

estimate (MLE) remains unreliable and tends to underesti-
mate the probability of very rare n-grams which are hardly
observed even in huge corpora. One of the most successful
alternatives to date is to use neural networks to estimate the
probabilities of word sequences, which has shown significant
promise for statistical language modeling. In this approach,
distributed word representations and the associated probabil-
ity estimates are jointly computed in a multi-layer or recur-
rent neural network architecture, where distributionally simi-
lar words are represented as neighbors in a continuous space.
The predicted probability of the next word is turned into a
smooth function of the word representations, which alleviates
the sparsity issue to some extent and leads to better general-
ization for unseen n-grams.

Typical modeling methods include multi-layer neural net-
works [1], log-bilinear neural networks [2] and recurrent
neural networks [3, 4, 5], etc. The traditional multi-layer
neural network LMs (MLPLMs) and log-bilinear neural net-
work LMs (LBLMs) are still based on Markovian assumption
and they can do nothing about the words beyond the context
range. In contrast, recurrent neural network (RNN) is beyond
Markovian assumption and is very suitable for long series
modeling, where the hidden states compactly cluster the en-
tire history. In practice, recurrent neural network language
models (RNNLMs) have achieved record-breaking perplexi-
ties on many tasks since they were proposed [6, 7]. However,
according to [7], the improvements obtained with RNNLMs
come from better representation of short context information,
while not from learning cache information. Actually, if recur-
rent neural network is trained by stochastic gradient descent
(SGD), the error signal propagated through the recurrent con-
nections converges to zero or explodes fast in most cases [8].
Thus, it is hard to train a RNN to represent long-term patterns
that span over the entire sentence.

In this paper, the temporal kernel neural network language
model (TKNNLM) is proposed to explicitly capture long term
dependencies of words with exponential kernel, just like [9].
In this approach, the error signal is directly propagated to ev-
ery word in the entire history and the context information is
forgotten with exponential decay. Experimental results show
that our proposed TKNNLM can easily capture the long-term
dependencies and obtains the lower perplexity of 111.6 than

8247978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

Fig. 1. Temporal kernel neural network language model

the state-of-the-art results reported on the standard Penn Tree-
bank Corpus.

This paper is organized as follows: In section 2, the tem-
poral kernel neural network language model is described. The
training algorithm based on mini-batch is presented in section
3. Detailed experiments and performance evaluations are pre-
sented in section 4 and 5. Finally section 6 gives the conclu-
sion and the future work.

2. MODEL DESCRIPTION

In this section, we formally define the TKNNLM as shown
in Fig. 1, and we consider the words as indices in a finite
vocabulary with V words. A word w will either refer to the
word or the index in the vocabulary, and it can be represented
by a 1-of-V coding vector v ∈ RV , where all elements are
null except the w-th.

The first layer builds a continuous representation of the
history by mapping each word into its real-valued representa-
tion. The mapping is defined by RTv, where R ∈ RV×D is
a projection matrix and D is the dimension of the continuous
projection space. The TKNNLM is a neural network that op-
erates in time. Let xt = RTvt, where xt denotes the word
vector at time t.

The second layer transforms the entire input history with
exponential kernel, where each unit of the non-linear layer is
an efficient leaky integrator, which makes it easier to notice
long-term dependencies. The dimension of the second layer
is denoted as H and the second layer are computed as follows:

ht+1 = f(st+1 + bh) (1)

and

st+1 = xt + λ ∗ xt−1 + λ2 ∗ xt−2 + ... (2)

where each element of the vector λ ∈ RH is a decay factor
for the specific dimension and “∗” means the element-wise
multiplication of vectors. The contribution of the history is
decayed exponentially with time, if each element of λ is con-
strained between -1.0 and 1.0. In Eq.(1), bh ∈ RH is a bias

Fig. 2. The recurrent connection in temporal kernel neural
network language model

for the hidden layer and f(z) is a non-linear activation func-
tion:

f(z) = tanh(z) =
ez − e−z

ez + e−z
(3)

Finally, the predicted probability P(wt+1|history) is com-
puted in the output layer.

P(wt+1|history) = g(ht+1Who + bo) (4)

where Who ∈ RH×V is a prediction matrix, bo ∈ RV is a
bias and g(z) is the softmax function:

g(zm) =
ezm∑
k e

zk
(5)

which ensures that the output is a probability distribution. Ac-
tually, according to Eq.(2), st+1 can be easily rewritten as a
recursive form:

st+1 = λ ∗ st + xt

s0 = 0
(6)

The implicit recurrent connection of TKNNLM is shown in
Fig. 2 and the structure of TKNNLM is quite similar to that
of RNNLM. By using the recurrent connection, information
can cycle inside the network for arbitrarily long time. Note
that the recurrent connection in TKNNLM is before rather
than after the non-linear activation, where an exponential ker-
nel is introduced and each element of decay vector is trained
separately. As usual, the dimension D and H can be different
in traditional MLPLMs, so do R and Who. In practice, the
word vectors in these two matrices are distributed similarly
in the high-dimensional space, where similar words are dis-
tributed together. These two matrices are constrained to be
identical in LBLM and the parameters are reduced by half.
Therefore, to compress the size of the model and reduce the
parameters, the projection matrix is assumed to be a linear
transformation of the prediction matrix. That is to say R =
WT

hoWih, where H = D and Wih ∈ RD×D. Additionally,
to constrain the range of the λ vector between -1.0 and 1.0,
another vector λ′ ∈ RD is introduced where λ = tanh(λ′),
and λ′ are trained.

8248

Fig. 3. Several sentences with variable lengths are taken as
a mini-batch in the training for speeding up. Mask is used to
indicate whether the error of the word needs to be summed.

3. TRAINING BASED ON STOCHASTIC GRADIENT
DESCENT

At each training step, the error vector is computed according
to the cross entropy criterion. The TKNNLM can easily be
unfolded to a feedforward neural network as the RNNLM and
the gradient of the error can be efficiently computed by back-
propagation through time algorithm (BPTT). Compared with
the RNNLM, TKNNLM is a shallow network, which is more
easily trained by SGD. In this approach, a sentence is taken
as a unit for processing, where the parameters are updated af-
ter one forward and backward pass of the entire sentence. To
speed up, several sentences with variable lengths are taken as
a mini-batch in the training, where matrix-vector operations
are replaced by matrix-matrix operations. The matrix-matrix
operations have been efficiently optimized in BLAS Library
of MKL or CUDA. At the same time, a binary mask matrix
is generated according to the mini-batch as shown in Fig. 3
where only the element corresponding to a word will be set
as 1. The error signal is accumulated only if the mask of that
word is 1, so does the gradient. If a sentence is longer than
a predefined threshold Tmax, it will be truncated. Addition-
ally, to improve the convergence, the sentences in the corpus
are shuffled at the beginning of each iteration.

4. PERPLEXITY EVALUATION

One of the most widely used data sets for evaluating perfor-
mance of statistical language models is the Penn Treebank
portion of the Wall Street Journal Corpus (denoted as PTB
corpus). The proposed TKNNLM is evaluated on the PTB
corpus which is preprocessed by lowercasing words, remov-
ing punctuation and replacing numbers with the “N” symbol.
Sections 00-20 (930K words) are used as training sets, sec-
tions 21-22 as validation sets (74K words), and sections
23-24 as test sets (82K words). The vocabulary size is 10K,
including a special token for unknown words. The same
setup has been previously used by many researchers, which
allows us to compare directly the performance of different

Table 1. The perplexity of state-of-the-art LMs reported on
the test set of Penn Treebank Corpus[6].

Model Perplexity
individual +KN5

5-gram with Kneser-Ney smoothing 141.2 -
Log-bilinear LM 144.5 115.2

Feedforward Neural Network LM 140.2 116.7
Recurrent Neural Network LM 124.7 105.7

Temporal Kernel Neural Network LM 111.6 100.7

techniques in language modeling. First of all, according to
[6], the perplexity of state-of-the-art LMs reported in this
setup, without consideration of the complexity, are given in
Table 1, where the RNNLM with 400 hidden units is the
best model. Then, a TKNNLM with 400 hidden units is
trained by BPTT to compare the performance. The learning
rate is set as lr = initlr/(1.0 + lrmult×count), where
initial learning rate (initlr) is set as 1.0, the learning rate
decay factor (lrmult) is set as 4×10−7 and count denotes
the number of words processed. When the perplexity of
the validation decreases very slowly or increases, initlr is
halved. To speed up, all the TKNNLMs are trained with
a mini-batch of 5 sentences. On average, the weights are
updated once every 100 words. The baseline 5-gram with
modified Kneser-Ney smoothing (KN5) is trained by MITLM
toolkit [10]. Experimental results in Table 1 show that the
proposed TKNNLM is very competitive to the RNNLM,
and obtains the lower perplexity of 111.6 (more than 10%
reduction compared with that of RNNLM). The improve-
ment is significant, even compared to the interpolated with
KN5. In the following, different RNNLMs are trained using
rnnlm toolkit [11] for further comparisons. The truncated
BPTT is used for training the RNNLMs with bptt=5, bptt-
block=10 and min-improvement=1.001. To compare fairly,
the full vocabulary is used for the output without a class
layer. Detailed perplexity comparisons with different size of
hidden layers on the test set of PTB Corpus are shown in
Fig.4. The dashed curves denote the RNNLMs (blue) and
the interpolated with KN5 (red). The solid curves denote the
TKNNLMs (blue) and the interpolated with KN5 (red). Note
that the perplexity of the RNNLM with 400 hidden units is
a little higher than 124.7 in Table 1. Set bptt-block=1 and
min-improvement=1.0005, the performance of RNNLMs can
be further improved with a longer training time. Obvious im-
provements are observed in Fig.4. The number of parameters
in TKNNLMs is D×V + D×D + D + D + V , including
Who, Wih, λ′, bh and bo. A TKNNLM with 100 hidden
units needs around 1.01 million parameters for 10K vocabu-
lary, which is half of that of a RNNLM with the same size of
hidden layer. Perplexity comparisons with different number
of parameters are shown in Fig.5. The proposed TKNNLM is
more compact and efficient.

8249

50 100 150 200 250 300 350 400
100

110

120

130

140

150

160

170

Hidden layer size

P
P

L

Perplexity versus size of the hidden layer on the test set of PTB Corpus

KN5
RNNLM
RNNLM + KN5
TKNNLM
TKNNLM + KN5

Fig. 4. Perplexity comparisons with different size of the hid-
den layer on the test set of Penn Treebank Corpus. The PPL
of KN5 is 141.46

5. WSJ ASR EXPERIMENT

In this section, the TKNNLM is applied to rescore the N-best
in Wall Street Journal speech recognition task. To make the
experimental results reproducible, publicly available mod-
els, data and tool, including the acoustic model, dictionary,
training text for LMs and the decoder, are used as possible
as we can. In the following experiments, the acoustic model
is a speaker-independent crossword triphones with 8000 tied
states and 32 gaussian mixtures per state trained on WSJ0,
WSJ1 and TIMIT, which is publicly available [12]. The LMs’
training data consists of 37M tokens from WSJ0 corpus, from
which 1% is used as heldout data (0.37M words). The vo-
cabulary is limited to 20K words used by HDecode [13].
A backoff trigram is smoothed according to the modified
Kneser-Ney smoothing for decoding, where the pronouncing
dictionary is from the CMU pronouncing dictionary [14].
In the experiment, 100-best hypotheses are generated from
DARPA WSJ’92 (eval92) and WSJ’93 (eval93) data sets to
be re-scored by different LMs. The interpolation weights are
tuned on the eval92 set (333 sentences), and eval93 set used
for evaluations consists of 213 sentences. As it is very time-
consuming to train RNNLM or TKNNLM on large data, we
randomly selected 10% tokens (3.7M) to train a RNNLM and
a TKNNLM for comparisons, where 400 hidden units were
used and a class layer with 300 classes was used for speed-
ing up the training of RNNLM. Detailed results are shown
in Table 2, where ’H400’ denotes 400 hidden units, ’S0.1’
means the 10% randomly selected data, and ’C300’ means a
class layer with 300 classes. Even though only 10% data is
used, the improvement of the model interpolated with KN5 is
obvious. The mixture of KN5 and TKNNLM obtains the best
WER 10.3% in this setup.

0 1 2 3 4 5 6 7 8
110

120

130

140

150

160

170

Number of free parameters (million)

P
P

L

Perplexity versus number of free parameters on the test set of PTB Corpus

KN5
RNNLM
TKNNLM

Fig. 5. Perplexity comparisons with different number of free
parameters on the test set of Penn Treebank Corpus. KN5
contains 2.45 million free parameters in total.

Table 2. 100-best rescoring of eval92 and eval93 set in WSJ
speech recognition task.

Model
Perplexity Word Error Rate

heldout eval92 eval92 eval93
One-best - - 9.4% 12.6%

KN5 80.05 111.50 8.4% 11.1%
RNNLMC300-H400-S0.1 121.00 153.25 9.5% 12.6%

+KN5 72.38 98.67 7.7% 10.6%
TKNNLM-H400-S0.1 104.32 130.58 9.0% 12.0%

+KN5 69.07 93.18 7.7% 10.3%

6. CONCLUSION AND FUTURE WORK

In this paper, a temporal kernel neural network langauge
model is proposed to directly capture the long-term depen-
dencies of words, where the memory of history is decayed
exponentially. Experimental results show that the TKNNLM
obtains a lower perplexity than the state-of-the-art results
reported in PTB corpus, and the improvement in WSJ speech
recognition task is significant, even though only 10% data
is used. TKNNLM is very compact and efficient for lan-
guage modeling. Additionally, in WSJ speech recognition,
more training data of the TKNNLM is expected for better
performance. A TKNNLM trained on large data needs to
be compared with other state-of-the-art LMs in the future,
especially the recurrent neural network with hash-based max-
imum entropy language model (RNNME)[7]. TKNNLM can
also be easily extended with a maximum entropy model just
like RNNME and better performance is expected. Last but
not least, how to train the TKNNLM efficiently is a very
important topic, which need to be further investigated. Al-
though SGD is simple and efficient for large scale data, the
hyper-parameters such as initlr, lrmult need to be tuned
carefully. Smarter optimization methods need to be explored.

8250

7. REFERENCES

[1] Yoshua Bengio, Rejean Ducharme, Pascal Vincent,
and Christian Jauvin, “A neural probabilistic lan-
guage model,” Journal of Machine Learning Research
(JMLR), pp. 1137–1155, 2003.

[2] Andriy Mnih and Geoffrey Hinton, “Tree new graphical
models for statistical langauge modelling,” in Proc. of
ICML, 2007, pp. 641–648.

[3] Mikolov Tomas, Karafit Martin, Burget Lukas,
Hanza Gernocky Jan, and Khudanpur Sanjeev, “Recur-
rent neural network based language model,” in Proc. of
InterSpeech, 2010, vol. 2010, pp. 1045–1048.

[4] Mikolov Tomas, Kombrink Stefan, Burget Lukas,
Hanza Gernocky Jan, and Khudanpur Sanjeev, “Exten-
sions of recurrent neural network language model,” in
Proc. of ICASSP, 2011.

[5] Martin Sundermeyer, Ralf Schlter, and Hermann Ney,
“LSTM neural networks for language modeling,” in
Proc. of InterSpeech, 2012.

[6] Mikolov Tomas, Deoras Anoop, Kombrink Stefan, Bur-
get Lukas, and Hanza Gernocky Jan, “Empirical evalu-
ation and combination of advanced language modeling
techniques,” in Proc. of InterSpeech, 2011.

[7] Tomas Mikolov, Statistical Language Models Based on
Neural Netowrks, Ph.D. thesis, Brno University of Tech-
nology (BUT), 2012, [Online] http://www.fit.
vutbr.cz/˜imikolov/rnnlm/thesis.pdf.

[8] Yoshua Bengio, Patrice Simard, and Paolo Frasconi,
“Learning long-term dependencies with gradient de-
scent is difficult,” IEEE Transactions on Neural Net-
works, vol. 5, no. 2, pp. 157–166, mar 1994.

[9] Ilya Sutskever and Geoffrey E. Hinton, “Temporal-
kernel recurrent neural networks,” Neural Networks,
vol. 23, pp. 239–243, 2010.

[10] Bo-June(Paul)Hsu, “MIT Langauge Modeling Tookit,”
[Available] http://code.google.com/p/
mitlm.

[11] Mikolov Tomas, Deoras Anoop, Kombrink Stefan, Bur-
get Lukas, and Hanza Gernocky Jan, “Rnnlm - re-
current neural network language modeling toolkit,” in
Proc. of ASRU, 2011, [Available] http://www.fit.
vutbr.cz/˜imikolov/rnnlm/.

[12] Keith Vertanen, “Baseline WSJ acoustic models for
HTK and Sphinx: Training recipes and recognition ex-
periments,” Tech. Rep., 2006, [Available] http:
//keithv.com/software/htk/us.

[13] Steve Young, Gunnar Evermann, Mark Gales, Thomas
Hain, Dan Kershaw, Xunying Liu, Gareth Moore, Julian
Odell, Dave Ollason, Dan Povey, Valtcho Valtchev, and
Phil Woodland, The HTK book, version 3.4.1, 2009.

[14] “The CMU Pronouncing Dictionary Release 0.7a,”
2007, [Available] http://www.speech.cs.cmu.
edu/cgi-bin/cmudict.

8251

