CONVERTING NEURAL NETWORK LANGUAGE MODELS INTO BACK-OFF LANGUAGE
MODELS FOR EFFICIENT DECODING IN AUTOMATIC SPEECH RECOGNITION

Ebru Arisoy, Stanley F. Chen, Bhuvana Ramabhadran, Abhinav Sethy

IBM T.J. Watson Research Center, Yorktown Heights, NY, 10598

{earisoy, stanchen, bhuvana, asethy}Qus.ibm.com

ABSTRACT

Neural Network Language Models (NNLMs) have achieved very
good performance in large-vocabulary continuous speech recogni-
tion (LVCSR) systems. Because decoding with NNLMs is very
computationally expensive, there is interest in developing methods
to approximate NNLMs with simpler language models that are suit-
able for fast decoding. In this work, we propose an approximate
method for converting a feedforward NNLM into a back-off n-gram
language model that can be used directly in existing LVCSR de-
coders. We convert NNLMs of increasing order to pruned back-off
language models, using lower-order models to constrain the n-grams
allowed in higher-order models. In experiments on Broadcast News
data, we find that the resulting back-off models retain the bulk of
the gain achieved by NNLMs over conventional n-gram language
models, and give significant accuracy improvements as compared
to existing methods for converting NNLMs to back-off models. In
addition, the proposed approach can be applied to any type of non-
back-off language model to enable efficient decoding.

Index Terms— Neural network language models; decoding
with neural network language models.

1. INTRODUCTION

State-of-the-art decoders for automatic speech recognition generally
utilize back-off n-gram language models in decoding. A back-off
n-gram language model P(w|h) takes the form

P(wl|h
o) ={ et

where w is the current word; h is the history or last n — 1 words;
' is the truncated history obtained by dropping the last word in h;
and a(h) is a back-off weight that enforces normalization. The set P
contains the n-grams hw for which we keep explicit probability esti-
mates P(w|h); all other n-gram probablities are computed by back-
ing off to a lower-order estimate. The distribution P(w]|h’) as well
as lower-order distributions are represented in similar fashion. Since
the majority of probabilities are evaluated using back-off estimates,
the model can be represented with a modest number of parameters
P(wl|h). Back-off language models have been extensively studied,
and very efficient decoding algorithms have been developed.

Even though n-grams models are the most widely-used language
models due to their simplicity and efficiency, they generalize to un-
seen n-grams poorly. NNLMs [1, 2, 3] were introduced to address
some of the deficiencies of n-gram models, jointly learning dis-
tributed representations for words along with a probability function
for word sequences. The main idea in NNLMs is to embed words
into a continuous space and to perform probability estimation in this

if hweP

if hw¢P M

978-1-4799-0356-6/13/$31.00 ©2013 IEEE

8242

space using neural networks. Because the representations of simi-
lar unseen and seen m-grams will tend to be nearby in continuous
space, NNLMs can produce reasonable probability estimates even
for unseen n-grams. Feedforward NNLMs [1, 2, 3, 4] and recurrent
NNLMs (RNNLMs) [5, 6] have been shown to yield both perplexity
and word error rate (WER) improvements as compared to conven-
tional n-gram language models.

Decoding directly with NNLMs is very slow, because each prob-
ability lookup is extremely expensive [7]. Consequently, NNLMs
are typically applied in LVCSR within a lattice or n-best list rescor-
ing framework. In these scenarios, the search space presented to the
NNLM will be restricted by the language model used in the first-pass
decoding. Integration of a NNLM into decoding avoids this restric-
tion and may improve performance, and also avoids the increased
latency introduced with rescoring.

In this paper, we propose an approximate method for converting
a feedforward NNLM into a back-off language model that can be
directly used in existing state-of-the-art decoders. In general, repre-
senting a NNLM exactly as a back-off language model using Eq. 1
requires storing parameters P(w|h) for all n-grams haw, seen or un-
seen. The main decisions to be made in approximating a NNLM as
a back-off language model are how to select P, the set of n-grams
to explicitly store probabilities for; and how to select the values for
P(w|h). To address these issues, we use the perspective of language
model pruning, e.g., entropy-based pruning [8]. Conceptually, one
can imagine starting with an exact representation of a NNLM as a
back-off language model, and then pruning away the n-grams re-
sulting in the least “loss” until a model of the desired size is reached.

To calculate the loss resulting from removing an n-gram, we
need to specify back-off probabilities, e.g., P(w|h’). It is not ob-
vious how to extract these from an n-gram feedforward NNLM. In-
stead, we build m-gram NNLMs for m = 2,...,n — 1 and extract
lower-order probabilities from the corresponding NNLM. In addi-
tion, it is prohibitively expensive to consider pruning all possible n-
grams over a large vocabulary. Therefore, we propose a hierarchical
implementation: starting from a lower-order NNLM, i.e., a 2-gram
model, we grow back-off models of successively higher order using
higher-order NNLMs. At each level, n-gram histories are restricted
to those retained in the lower-order language model, thereby making
the overall pruning computation manageable. Note that this is sim-
ilar to growing variable length n-gram models which are back-off
language models [9, 10, 11, 12]

The rest of the paper is organized as follows. The prior work
related to our paper is given in Section 2. Section 3 briefly explains
NNLMs. Section 4 describes the proposed approach for converting
NNLMs into back-off language models. Experiments and results are
presented in Section 5. Finally Section 6 concludes the paper.

ICASSP 2013

2. RELATED WORK

Several methods have been proposed for approximating NNLMs
with simpler language models that can be used for efficient de-
coding. One approach is to use a back-off n-gram model as a
variational approximation to a long-span language model such as a
RNNLM [13]. To do this, text data is generated from the long-span
language model and then a conventional n-gram language model is
built on the simulated text data. Encouraging results were obtained
with this approach even on larger data sets [14].

Another approach is to approximate a RNNLM using a weighted
finite state transducer (WFST) [15]. The states of the transducer cor-
respond to a discretization of the continuous space representation of
word histories, and arc probabilities are derived from the RNNLM.
WEST conversion approach outperformed the conventional bigram
language model when these models were used in decoding. How-
ever this gain disappeared when the decoder output is rescored with
the RNNLM. Furthermore, current state-of-the-art decoders utilize
higher order n-gram models in decoding.

In [16], SuperARV language models, a syntactic language model
based on Constraint Dependency Grammars, are converted to back-
off n-gram models using entropy-based pruning, though few details
are given on how this is done. They also propose taking an exist-
ing back-off n-gram model and replacing all P(w|h) values with
probabilities from a SuperARV language model.

3. NEURAL NETWORK LANGUAGE MODELS

In neural network language models [1, 2, 3], a neural network is
used to estimate language model probabilities. The input to the neu-
ral network is the words in the history and the output is the proba-
bility distribution over the predicted word. Here the basic idea is to
project words into a continuous multi-dimensional feature space, and
to compute the n-gram probabilities by employing the neural net-
work. The expectation is that words that are semantically or gram-
matically related will be mapped to similar locations in the continu-
ous space, allowing NNLMs to generalize well to unseen n-grams.
A typical NNLM consists of input, projection, hidden and output
layers. While augmenting the input layer with longer context or syn-
tactic information [17, 18] does not increase the overall complexity
much, using a large number of target words at the output layer is a
challenge since the computational cost of a NNLM is mainly deter-
mined by the size of the output layer. Therefore, the output layer
has targets only for the output vocabulary V,, a shortlist contain-
ing the most frequent words in the vocabulary. To assign non-zero
probabilities to words outside of the output vocabulary, smoothing is
performed using a background language model [3]:

B(h) Panim (wlh)
P(w|h) :{ P}ELM(w|h) |

where Punim(w|h) and Peim(w|h) represent the NNLM and back-
ground language model probabilities, respectively, and 3(h) is a
history-dependent normalization constant.

if weV,
it w¢V,)

4. CONVERTING A NNLM INTO A BACK-OFF
LANGUAGE MODEL

For a language model to be expressed compactly as a back-off
model, the probabilities of most n-grams must be proportional to
their back-off probabilities (corresponding to the term a(h) P(w]|h')
in Eq. 1). This property does not hold for NNLMs, so to represent

NNLM probabilities exactly over the output vocabulary requires
|[V|"~! x |V,| parameters in general, where V' is the complete vo-
cabulary. However, if the background language model in Eq. 2 is a
back-off language model, we can take advantage of its structure to
represent the overall NNLM as a back-off model. Substituting Eq. 1
for Pgom(wlh) in Eq. 2, we obtain

B(h) Pasiw (wlh)
PBLM(U)VL)
Oz(h)PBLM (w|h')

if welV,
if w¢VoAhwe Pam
if wé¢ Vo A\hw¢ Pem
(3)
While we can represent the overall NNLM as a back-off model
exactly, it is prohibitively large as noted above. The technique of
pruning can be used to reduce the set of n-grams P for which we
explicitly store probabilities P(w|h). In this paper, we use entropy-
based pruning [8], the most common method for pruning back-off
language models. For each n-gram, the relative entropy between
the original model and the model excluding that n-gram is calcu-
lated. If the relative entropy is less than a threshold, the n-gram
is pruned. To apply entropy-based pruning, we need estimates for
lower-order probabilities, e.g., P(w|h’). As it is unclear how to ex-
tract these from a feedforward NNLM, we train m-gram NNLMs for
m = 2,...,n—1 and use these to set lower-order probabilities. Un-
igram probabilities are set by the background language model which
is trained on the language model training data.

A naive implementation for converting the overall NNLM into a
back-off model is to build the entire unpruned n-gram model before
performing pruning. However, this is impractical for vocabularies of
any reasonable size; e.g., if |V, |V,| > 10K words, an unpruned
4-gram model contains at least 10'® n-grams.

P(wlh) =

To make pruning tractable, we propose a hierarchical algorithm
where we build pruned models of increasingly higher order, and use
the pruned lower-order models to constrain which n-grams are con-
sidered in the next higher-order model. In particular, given a pruned
(m — 1)-gram model, we only consider m-grams of the form hw for
h that belong to the lower-order model. All other m-grams are auto-
matically pruned, or more accurately, never added to the model in the
first place. Given this restriction, we need only consider k X |V,| m-
grams for pruning at a given level if there are k items in the pruned
lower-order model.

We outline the complete process for converting a 4-gram feed-
forward NNLM into a 4-gram back-off language model in Figure 1.
First, 2-gram, 3-gram and 4-gram NNLMs and conventional lan-
guage models (CLMs) are built from the training data. Our hier-
archical implementation starts from 2-grams. We use Eq. 3 to com-
bine the 2-gram NNLM with the background 2-gram CLM, giving
us a 2-gram back-off NNLM. This model is quite large, contain-
ing |V| x |Vol| 2-grams, not including 2-grams coming from the
background CLM. We apply entropy-based pruning, producing a
2-gram pruned back-off NNLM. The size of this model is deter-
mined by a pruning threshold. To create the 3-gram background
language model, we append the 3-grams from the 3-gram CLM to
the 2-gram pruned back-off NNLM and recompute the a(h)’s to
renormalize the model. Then, we repeat this procedure until the
highest-order pruned back-off NNLM is obtained. When creating
the initial back-off model for 3-grams and above, we add only n-
grams from the NNLM that are extensions of n-grams found in the
lower-order pruned back-off NNLM. Note that the proposed hierar-
chical approach lets us use lower-order NNLMs for backing off and
same-order conventional language models for smoothing zero prob-
ability events.

8243

[Texi Data |
Text Data

N Conversion to
Zgram NNLM back-off model
Entropy-based pruning

| 2-gram pruned back-off NNLM |

Use as BLM
CLM

Append

e
CLM

Re-normalize back-off weights
3-gram BLM

Conversion to
3-gram NNLM back-off model
Entropy-based pruning

| 3-gram pruned back-off NNLM |

Append

s
CLM

Re-normalize back-off weights
4-gram BLM

Conversion to
back-off model
Entropy-based pruning

| 4-gram pruned back-off NNLM |

4-gram NNLM

Fig. 1. Diagram showing the hierarchical implementation for con-
verting NNLM into a 4-gram back-off language model. Conven-
tional n-gram language model is denoted by CLM.

5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

The experiments are performed on an English Broadcast News task.
The baseline system is based on the 2007 IBM GALE speech tran-
scription system [19]. The discriminatively-trained speaker-adaptive
acoustic model is trained on 430h of Broadcast News audio, and we
use 55M words of language model training text.! The baseline lan-
guage model in our experiments is a 4-gram conventional language
model with a 84K-word vocabulary containing a total of 46M n-
grams, specifically 4M 2-grams, 15M 3-grams and 27M 4-grams.
We use the 104 data set as the test set.

We train our NNLMs on the same 55M-word corpus. The most
frequent 20K words in the vocabulary are used as the output vocabu-
lary V,. The 2-gram, 3-gram and 4-gram NNLM:s project each input
word to 120 dimensions and contain 800 hidden units. These pa-
rameters are chosen based on our previous experience with the same
setup [4]. We use hierarchical NNLM training [4] with 150 classes
at the output layer to speed up training. Word classes are obtained
via bigram mutual information clustering [20].

Using our hierarchical pruning algorithm, we generate a 4-gram
back-off language model from the NNLMs. The pruning thresh-
old for each n-gram order is chosen to keep the number of n-grams
the same as in the unpruned baseline language model. This 4-gram
back-off language model is interpolated with the baseline 4-gram
language model before being used in decoding. The interpolation
weight is chosen to minimize the perplexity on a held-out set con-
taining 49K words.

'In the original setup, a total of 350M words of training data is used.

266 —O—NNLM

~OF NNLM converted into back-off LM

—%— NNLM (interpolated with 4-gram LM)

. -0~ NNLM converted into back-off LM (interpolated with 4-gram LM)
200 | * 4-gramlLM

Perplexity

n-gram order

Fig. 2. Perplexity results on the held-out set.

We also train a 6-gram NNLM, projecting each input word to
120 dimensions and using 800 hidden units as before. This 6-gram
NNLM is used for rescoring lattices generated by the baseline lan-
guage model and by the 4-gram back-off NNLM. Before rescoring,
the 6-gram NNLM is interpolated with the baseline language model
and the interpolation weight is optimized on the held-out set.

5.2. Experimental Results

We first investigate the effect on perplexity of converting a NNLM
into a back-off language model. Figure 2 shows the held-out set per-
plexity for NNLMs of various order (up to 6-gram, solid lines) as
well as for the corresponding back-off language models (up to 4-
gram, dashed lines). We do the conversion for only up to 4-grams
since this is the highest-order model we use for decoding. In addi-
tion, we show results for before and after these models are interpo-
lated with the baseline 4-gram language model. The “4” sign shows
the perplexity for the baseline 4-gram language model. Before in-
terpolation with the baseline, the 4-gram NNLM yields a better per-
plexity than the baseline, while the back-off NNLM is a little worse.
After interpolation, the perplexities of both models are significantly
better than the baseline, with the original NNLM achieving lower
perplexities then its back-off counterpart. The perplexity differences
between these models increase with increasing n-gram order. This is
expected since the fraction of n-grams (out of the set of all possible
n-grams) that can be retained after pruning decreases with higher n,
resulting in larger approximation error.

Next, we perform decoding experiments with the 4-gram back-
oftf NNLM interpolated with the baseline language model. Word-
error rate results with this model and the baseline model are give
in Table 1. The baseline WER on the rt04 test set is 14.7%. A
NNLM converted into a back-off language model reduces the WER
to 13.7%, yielding 1% absolute improvement over the baseline (sig-
nificant at p < 0.001, as measured by the NIST MAPSSWE test).
Then, we rescore the lattices generated by these two models with
4-gram and 6-gram NNLMs interpolated with the language models
used to create the corresponding lattices. Rescoring the baseline lat-
tices with 4-gram and 6-gram NNLMs yields WERs of 13.3% and
13.2%, respectively. Rescoring the lattices created with the back-
off NNLM yields 13.0% and 12.8%, respectively. Our best result of
12.8% is a 0.4% absolute improvement (significant at p < 0.001)
over the best result obtained by rescoring the baseline lattices. Early
integration of the NNLM in decoding produces better output lattices,
so that rescoring with the full NNLM yields better overall results.

8244

Table 1. WER results with the baseline language model and with a
NNLM converted into a back-off language model. Lattice rescoring
results with 4-gram and 6-gram NNLMs are also reported.

Model | WER (%) |
Baseline LM 14.7
+ rescore lattices with 4-gram NNLM 13.3

+ rescore lattices with 6-gram NNLM 13.2

NNLM converted into a back-off LM 13.7
+ rescore lattices with 4-gram NNLM 13.0
+ rescore lattices with 6-gram NNLM 12.8

5.3. Empirical Comparison with Other Approaches

We can relate our method to previous conversion methods by com-
paring how the set of retained n-grams P is selected, and by com-
paring how the parameters P(w|h) are estimated. In our approach,
‘P is determined based on hierarchical entropy-based pruning and
the chosen pruning threshold. The probabilities P(w|h) are taken
directly from the NNLM of the appropriate order. A simple algo-
rithm proposed in [16] is to take P to be the set of n-grams seen in
the training data. The probabilities P(w|h) are determined in the
same manner as for our algorithm. Note that this model will contain
the same set of n-grams P as the baseline language model, but with
different parameters P(w|h). To build this model, we compute the
probabilities of all training data n-grams using 2-gram, 3-gram and
4-gram NNLMs. All of these n-grams and their probabilities are
collected together with unigram probabilities and back-off weights
are calculated. This language model is referred to as “replace proba-
bilities” in Table 2. Using this model in decoding after interpolating
with the baseline language model reduces the WER from 14.7% to
14.0% (significant at p < 0.001). However, our proposed approach
reduces the WER to 13.7%, yielding 0.3% more gain (significant at
p = 0.021) while selecting the same number of n-grams in P. Thus,
entropy-based pruning can select unseen n-grams that are more ef-
fective than n-grams actually occurring in the training data. Here
it is important to note that in the “replace probabilities” approach,
the number of n-grams remains the same, 46M, after interpolating
with the baseline language model, whereas our approach results in a
larger size interpolated model with 74M n-grams.

Next, we compare our approach with the variational approxima-
tion approach whereby a back-off language model is trained on text
generated from a long-span language model such as a RNNLM [13].
Since NNLMs utilize a shortlist at the output layer and a background
language model is used to assign probabilities to words outside of
the output vocabulary V,, as given in Eq. 2, we slightly modify the
implementation given in [13]. To generate words over the whole vo-
cabulary, we need to sample text based on both the NNLM and back-
ground language model distributions. For each history, the predicted
word is first sampled from the background language model distribu-
tion. If the predicted word is in the output vocabulary, this word is
rejected and another word is sampled from the NNLM distribution.
Otherwise, the predicted word is accepted. We generate 55M words
of text, both with a 4-gram NNLM and a 6-gram NNLM. As was
shown in [14], increasing the amount of the simulated text data im-
proves the performance. However, we only simulate 55M words of
text to provide a reasonable comparison for our experiments. For
each simulated corpus, we train a conventional 4-gram language
model and these models are used in decoding after interpolating with
the baseline language model. The interpolated language models have

Table 2. Decoding word-error rates for various approaches for con-
verting a NNLM to a back-off language model.

Model | WER (%) |
Baseline LM 14.7
NNLM converted into a back-off LM 13.7
Replace probabilities 14.0
Simulated text from 4-gram NNLM 14.1
Simulated text from 6-gram NNLM 14.0

approximately 100M n-grams. The results are given in Table 2. Lan-
guage models built from the simulated text from a 4-gram NNLM
and 6-gram NNLM yield word-error rates of 14.1% and 14.0%, re-
spectively. The improvements obtained with these models over the
baseline are statistically significant at p < 0.001. Our proposed ap-
proach yields 0.3% more gain (significant at p = 0.014) than the
best result, 14.0%, obtained with the variational approach.

We can compare our approach with the variational method in
terms of how n-grams parameters are selected and how parameter
values are computed. The variational approach will tend to select n-
grams with high marginal probabilities, though this selection will be
affected by sampling noise. (If the resulting back-off model is then
pruned with entropy-based pruning, the set of selected n-grams may
be quite similar to those selected with our method.) For top-order n-
grams, P(w|h) is taken directly from a NNLM in our method, while
this parameter is set to about the same value via sampling in the vari-
ational method. For lower-order n-grams, P(w|h) is taken directly
from a lower-order NNLM in our method, while these probabilities
are set via Kneser-Ney smoothing, say, for the variational method.
Thus, these two methods may set P(w|h) to substantially different
values for lower-order n-grams.

6. CONCLUSION

In this paper, we propose a novel method for approximating a NNLM
with a back-off language model to enable efficient decoding. We
discuss how to represent a NNLM as a back-off language model
and how to prune this model efficiently using a hierarchical algo-
rithm. We have found that significant improvements can be ob-
tained as compared to the baseline model through the early integra-
tion of NNLMs into decoding. Furthermore, decoding with a back-
off NNLM results in better output lattices, so that lattice rescoring
with a full NNLM yields additional improvements as compared to
rescoring lattices generated with the baseline model. Comparisons
with other approaches show that the proposed method is a promis-
ing direction for using NNLMs in decoding, though experiments on
other domains and with larger data sets are needed. While we in-
vestigated only NNLM:s in this work, this method can be applied to
other types of language models as well, though it remains to be seen
whether it will be as effective.

7. REFERENCES

[1] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Chris-
tian Jauvin, “A neural probabilistic language model,” Journal
of Machine Learning Research, vol. 3, pp. 1137-1155, 2003.

[2] Holger Schwenk and Jean-Luc Gauvain, “Training neural net-
work language models on very large corpora,” in Proceedings
of HLT-EMNLP 2005, 2005, pp. 201-208.

8245

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

[13]

[14]

[15]

(16]

Holger Schwenk, “Continuous space language models,” Com-
puter Speech and Language, vol. 21, no. 3, pp. 492-518, July
2007.

Hong-Kwang Jeff Kuo, Ebru Arisoy, Ahmad Emami, and Paul

Vozila, “Large scale hierarchical neural network language
models,” in Proceedings of Interspeech, Portland, Oregon,
USA, 2012.

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky,
and Sanjeev Khudanpur, “Recurrent neural network based lan-
guage model,” in Proceedings of INTERSPEECH 2010, 2010,
pp. 1045-1048.

Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur, “Extensions of recurrent neu-
ral network language model,” in Proceedings of IEEE Interna-
tional Conference on Acoustic, Speech and Signal Processing,
2011, pp. 5528-5531.

Holger Schwenk and Jean-Luc Gauvain, “Connectionist lan-
guage modeling for large vocabulary continuous speech recog-
nition,” in Proceedings of IEEE International Conference
on Acoustic, Speech and Signal Processing, Orlando, Florida,
USA, 2002, pp. 765 — 768.

Andreas Stolcke, “Entropy-based pruning of backoff lan-
guage models,” in Proceedings of DARPA Broadcast News
Transcription and Understanding Workshop, Lansdowne, VA,
USA, 1998, pp. 270 — 274.

M. Siu and M. Ostendorf, “Variable n-grams and extensions for
conversational speech language modeling,” IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 8, no. 1, pp.
63— 75, January 2000.

Vesa Siivola and Bryan Pellom, “Growing an n-gram model,”
in Proceedings of Interspeech, 2005, pp. 1309-1312.

Vesa Siivola, Teemu Hirsimaki, and Sami Virpioja, “On grow-
ing and pruning kneser—ney smoothed n-gram models,” /IEEE
Transactions on Audio, Speech and Language Processing, vol.
15, no. 5, pp. 1617-1624, 2007.

Sami Virpioja and Mikko Kurimo, “Compact n-gram models
by incremental growing and clustering of histories,” in Pro-
ceedings of Interspeech - ICSLP, Pittsburgh, PA, USA, 2006,
pp. 1037-1040.

Anoop Deoras, Tomas Mikolov, Stefan Kombrink, Martin
Karafiat, and Sanjeev Khudanpur, “Variational approximation
of long-span language models for LVCSR,” in Proceedings of
IEEE International Conference on Acoustic, Speech and Signal
Processing, Prague, Czech Republic, 2012, pp. 5532 — 5535.

Anoop Deoras, Tomas Mikolov, Stefan Kombrink, and Ken-
neth Church, “Approximate inference: A sampling based mod-
eling technique to capture complex dependencies in a language
model,” Speech Communication, vol. 55, no. 1, pp. 162-177,
January 2013.

Gwénolé Lecorvé and Petr Motlicek, “Conversion of recurrent
neural network language models to weighted finite state trans-
ducers for automatic speech recognition,” in Proceedings of
Interspeech, Portland, Oregon, USA, 2012.

Wen Wang, Andreas Stolcke, and Mary P. Harper, “The use
of a linguistically motivated language model in conversational
speech recognition,” in Proceedings of IEEE International
Conference on Acoustic, Speech and Signal Processing, 2004,
pp- 261-264.

[17]

[18]

[19]

[20]

8246

Ahmad Emami, A neural syntactic language model, Ph.D.
thesis, Johns Hopkins University, Baltimore, MD, USA, 2006.

Hong-Kwang Jeff Kuo, L. Mangu, A. Emami, 1. Zitouni, and
Y-S. Lee, “Syntactic features for Arabic speech recognition,”
in Proceedings of ASRU 2009, Merano, Italy, 2009, pp. 327 —
332.

S. F. Chen, B. Kingsbury, L. Mangu, D. Povey, G. Saon,
H. Soltau, and G. Zweig, “Advances in speech transcription
at IBM under the DARPA EARS program,” [EEE Transac-
tions on Audio, Speech, and Language Processing, vol. 14, no.
5, pp. 1596 — 1608, 2006.

P. F. Brown, V. J. Della Pietra, P. V. deSouza, J. C. Lai, and
R. L. Mercer, “Class-based n-gram models of natural lan-
guage,” Computational Linguistics, vol. 18, no. 4, 1990.

