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ABSTRACT

Word-classing has been used in language modeling for two
distinct purposes: to improve the likelihood of the language
model, and to improve the runtime speed. In particular,
frequency-based heuristics have been proposed to improve the
speed of recurrent neural network language models (RNN-
LMs). In this paper, we present a dynamic programming
algorithm for determining classes in a way that provably
minimizes the runtime of the resulting class-based language
models. However, we also find that the speed-based methods
degrade the perplexity of the language models by 5-10% over
traditional likelihood-based classing. We remedy this via
the introduction of a speed-based regularization term in the
likelihood objective function. This achieves a runtime close
to that of the speed based methods without loss in perplexity
performance. We demonstrate these improvements with both
an RNN-LM and the Model M exponential language model,
for three different tasks involving two different languages.

Index Terms— Language Modeling, Word Classes, Re-
current Neural Network, Model M

1. INTRODUCTION

Word classes are used in language modeling for at least two
distinct purposes: first, to improve the quality of the result-
ing language model, and secondly to speed up computation-
ally complex models. In a seminal work, Brown et al. [1]
proposed a classing scheme in which each word is assigned
to a single class, and the assignment is done in such a way
as to maximize data likelihood under a class-based bigram
model. This approach was further studied in [2, 3] and devel-
oped into a method for optimizing probability under a trigram
class model. Later, Goodman [4] observed that class-based
models can also be used to speed up otherwise computation-
ally infeasible models, and proposed the use of word classes
in maximum entropy language models. The key observation
is that a class model works by first computing the probability
of the class of a word given some context, and then the proba-
bility of the word itself conditioned on the class. The first step
requires normalizing over all the classes, and the second step
requires normalizing over all the words in a specific class. If
we assume that the vocabulary of size V is partitioned into

equally likely classes of size
√

V , this reduces the compu-
tational complexity from O(V ) to O(

√
V ). Word classing

has since been incorporated in several computationally com-
plex language models: Model M [5, 6] where it achieves both
likelihood and speed improvements; and in feedforward and
recurrent neural networks [7, 8, 9, 10, 11]. To further im-
prove speed, multi-level classing has been explored in, e.g.
[12, 13, 14].

In a novel approach, Mikolov and colleagues [11, 15]
abandon the Brown et al. [1] likelihood based classing for
a process that groups words of similar frequency together.
In a recurrent neural network language model, this classing
method has been shown to produce outstanding likelihoods.
Following an analysis by Povey, the method was subsequently
improved by binning on the basis of the square-root of the
frequency rather than the frequency itself [16].

This paper makes three important contributions to the
study of word classing. First, we show that the proposed
frequency-based classing methods are not in fact speed-
optimal, and present a dynamic programming algorithm
which is. Secondly, we make a systematic comparison of
language models using both frequency and likelihood based
classing, and find that likelihood based classing produces
models with significantly better perplexity, but also much
slower models. Finally, we propose the addition of a speed-
regularization term to the traditional likelihood objective
function, which results in classes that are both computation-
ally efficient and give low perplexities.

The remainder of this paper is organized as follows. In
Section 2 we briefly review computation with class based
models and identify the computational issues involved. In
Section 3, we review previous classing algorithms, and
present our new algorithms for speed-optimal and speed-
regularized classing. In Section 4, we evaluate the methods
with French and English datasets, using both Model M and
a recurrent neural network implementation. Section 5 fur-
ther relates this work to previous efforts, and we conclude in
Section 6.

8237978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



2. COMPUTATION WITH CLASS BASED
LANGUAGE MODELS

The basic operation of a class based language model is to
break the computation of a word probability into separate
class and word based calculations. For computational sim-
plicity, the classing function has traditionally assigned a sin-
gle class to each word. Denoting a word history as h and the
class of a word as c(w), we have

P (w|h) = P (c(w)|h)P (w|c(w), h)

With this decomposition, separate models may be used to
estimate the component probabilities. In maximum entropy
and neural network language models the computations in-
volve normalizing over all the labels in the model. In a system
that predicts P (w|h) directly, this requires normalizing over
all the words in the vocabulary, and is an O(V ) operation.
In a class model, however, this is broken into two separate
normalizations, first over the set of classes C when computing
P (c(w)|h), and secondly over the members of a specific class
when computing P (w|c(w), h). Denoting the size of word
w’s class as |c(w)|, the computational complexity of comput-
ing P (w|h) is O(|C|) + O(|c(w)|). Denoting the frequency
of word wi as f(wi) (computed over a training set with D
words), we may now write an expression for the expected
computational complexity R of evaluating all the words in
the training data using language model that uses a specific
classing scheme C.

R = D|C|+ D
∑
cq∈C
|cq|(

∑
wj∈cq

f(wj))

The first term is the contribution of the class part of the model,
which must be evaluated for each word. The second term is
simply the number of times each class-specific model must be
evaluated, multiplied by the number of members of the class.
While previously recognized [17], this objective function has
not been explicitly optimized in the prior literature, and in
Section 3.2, we will present a method for doing so.

3. CLASSING METHODS

3.1. Frequency Bin Classing

In earlier work by Mikolov and colleagues [11, 15], a fre-
quency based classing method was proposed to speed com-
putation with a RNN-LM. In this approach, the words are or-
dered by frequency. Then, classes are formed from blocks of
consecutive words by placing boundaries such that each class
accounts for a constant fraction of the total probability mass.
This has the property that the lower-numbered classes will
have fewer members than higher-numbered classes, because
their members are more frequent.

To improve on the runtime performance of frequency
based classing, Povey [17] has suggested taking the square-
root of the frequencies prior to doing the binning. This has

Data: N : Desired number of classes
V : Number of words in the vocabulary
cum(p): Cumulative frequency of words w1 . . . wp

F (k, p): Best cost of making k classes ending with
word wp

Initialization: F (0, 0) = 0 ; sort words by frequency
for k ← 1 to N do

for p← k to V do
F (k, p) =∞

for s← k − 1 to p− 1 do
F (k, p) = min(F (k, p), F (k − 1, s) +
(cum(p)− cum(s)) ∗ (p− s))

end
end

end
Algorithm 1: Recursion to determine optimal classes.
Maintenance of standard back-pointers allows recovery of
the boundaries.

the effect of flattening the distribution, and creating more
evenly sized classes.

3.2. Speed Optimal Classing

While frequency based classing provides a large speedup over
a purely word-based model, there are no guarantees as to run-
time, and it is unclear if the heuristics used are optimal. It is
also not obvious whether this is an NP-complete optimization
problem, since we have V words which must be shuffled into
K classes. In this section, we show that the previous heuris-
tics are not if fact optimal, but that the problem does admit a
quadratic time solution, and we present a dynamic program-
ming (DP) algorithm for finding the speed-optimal classing.

The algorithm is based on three observations. First, in the
optimal classing, we are free to index the classes in any order;
in particular, we may put the class with the fewest members
“first”; the next largest class next, and so forth up to the class
with the greatest number of members. Second, in the optimal
class assignment, it can never be the case that a class with
more members contains a word that occurs with greater fre-
quency than any member of a class with fewer members. This
is because swapping the two would then improve the objec-
tive function. This implies that the words should be sorted by
frequency. Finally, the best way of making k classes ending
at some position p in the sorted word order must include the
best way of making k − 1 classes ending at some position
less than p. These observations imply that the optimal class
assignment can be found by placing the words in order from
most to least frequent, and then placing partition boundaries.
Thus a DP algorithm which searches over all segmentations
of the sorted words will find the optimum. Algorithm 1 makes
this explicit with an O(NV 2) procedure. In fact, we can im-
prove the running time to O(NV log V ). Observe that the
optimal s = s(p) in Algorithm 1 is a monotone function of
p. Thus, once we compute s(p′) for some p′, we can limit
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the search for s for p < p′ and p > p′ by s ≤ s(p′) and
s ≥ s(p′) respectively. We replace the “for” loops for p and
s by a recursive binary search procedure that considers p’s in
the order N/2, N/4, 3N/4, and so on. Due to space limita-
tions, we omit the details here.

It is worth noting that this algorithm sheds light on another
outstanding problem - that of determining how many classes
to use. This may be done by computing the optimal way of
making up to V classes, and then choosing the number of
classes with the global optimum. In fact, the overall objective
function is a convex function of the number of classes, so as
soon as it begins to increase as the recursion proceeds, the
optimum has been found.

3.3. Likelihood Classing

In its original formulation [1, 2], word classing was viewed
as a method of improving the perplexity of a language model,
and the objective function proposed reflects this. The most
commonly used objective function is to maximize the data
likelihood under a class based bigram language model:

P (w1 . . . wn) =
∏

i

P (c(wi)|c(wi−1))P (wi|c(wi))

Ignoring terms which do not depend on the class assignments,
and using c1c2 to denote a class bigram occurring in the data,
and N(·) the count function, this is equivalent [1, 3] to maxi-
mizing∑

c1c2

N(c1c2) log N(c1c2)− 2
∑

c

N(c) log N(c)

This objective function can be effectively maximized us-
ing a local search procedure and incrementally updating the
counts of class bigrams as changes are made. We use a vari-
ant of the exchange algorithm of [2] which iteratively sweeps
over the vocabulary, and moves each word to a new class so
as to greedily improve the objective function.

3.4. Speed Regularized Likelihood Classing

As can be seen, the likelihood objective function is insensitive
to the computational complexity induced on a language model
by the resulting classes. Furthermore, one might expect that
for a large number of words, there are many classes that are
about equally good, and an essentially arbitrary decision will
be made. Our proposed speed regularization technique makes
use of this observation by adding an objective function term
which penalizes computational complexity. With speed regu-
larization, combining the objective function of Sections 3.3
and 3.2 and ignoring constants, the objective function be-
comes:∑

c1c2

N(c1c2) log N(c1c2)− 2
∑

c

N(c) log N(c)

−αD
∑
cq∈C
|cq|(

∑
wj∈cq

f(wj))

Dataset Train Size Test Size Vocab OOVs
Treebank 0.93M 0.082M 10k 5.8%
Wikipedia 68M 6.1M 126k 2.8%
AFP 47M 1.2M 136k 1.0%

Table 1. Dataset characteristics. Sizes in millions of words.

Here, the speed contribution is weighted by an overall
regularization weight α. We have found that a weight of
α = 0.001 produces good results across a variety of tasks
and different numbers of classes.

4. EXPERIMENTAL RESULTS

We tested our classing methods on three datasets. The first
is the relatively small Penn Treebank dataset, Linguistic Data
Consortium catalog number LDC1999T42, normalized as in
[10] 1. The second dataset is a sub-sampling of a Wikipedia
dump from January 2011, broken down into sentences, with
filtering to remove sentences consisting of URLs and Wiki
author comments [18]. The final dataset is a sampling of
the French Gigaword corpus, LDC2009T28. We used all the
Agency France-Presse data from 2006 and 2007 as training
data, with June, 2008 data being used as development data,
and August, 2008 as test data. We used the RNN toolkit of
Mikolov [16], modified to allow generic classing functions.
We restricted the dataset sizes to below 100M words because
the RNN training uses non-parallel stochastic gradient de-
scent, and is therefore time-consuming. The data characteris-
tics are summarized in Table 1. In all cases, a separate small
validation set was used to control the RNN learning rate; no
learning rate or regularization parameters were adjusted for
Model M. Four-gram language models trained with the CMU
language modeling toolkit achieve perplexities of 162, 190
and 76 respectively.

4.1. RNN Results

Table 2 shows the perplexity of a RNN-LM, using the differ-
ent classing procedures. The “OS” column presents the re-
sults for optimal-speed classing, and “Freq” represents linear
frequency binning. The “Povey” column uses the square-root
classing scheme. “LL” and “LL+Reg” use an objective func-
tion based on the data log-likelihood with and without speed
regularization. We see that the perplexities of the speed-based
classing methods are similar, and much worse than using like-
lihood based classing. Most importantly, there is minimal
degradation in perplexity introduced via the regularization.

Table 3 shows the run-times of a RNN-LM using the var-
ious classing schemes. We see that optimal and Povey class-
ing are essentially the same in speed, and the fastest of the
methods. Speed regularization achieves a significant speedup
with negligible cost in perplexity. The runtime improvement
is similar in both training and test.

1We thank T. Mikolov for providing the data.
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Dataset OS Povey Freq LL LL+Reg
Treebank 132 136 133 125 126
Wikipedia 143 143 142 132 132
AFP 61.4 60.7 60.7 54.5 55.5

Table 2. Perplexities of different classing methods with a
RNN-LM.

Dataset OS Povey Freq LL LL+Reg
Treebank 0.727 0.741 1.03 1.04 0.898
Wikipedia 113 116 342 382 145
AFP 68.7 74.2 259 214 90.0

Table 3. RNN-LM runtime using different classing methods,
minutes per sweep through the training data.

In these experiments, we used 100 classes for the Tree-
bank dataset, and 200 classes for the others. We also used
trigram max-ent features [15]. The networks all used 50 hid-
den units.

4.2. Model M Results

To further verify the usefulness of speed regularized class-
ing, we repeated the experiments with an implementation of
Model M [5, 6] using 4gm features. These results are interest-
ing from at least two perspectives: first, unlike with the RNN
implementation, Model M classing is intended to improve
likelihood. Secondly, implementations [19, 20, 21] typically
use a set of speedups which depart from the assumptions be-
hind the estimation of computational complexity. Specifi-
cally, our implementation operates on N-gram counts (not
word-by-word) and the N-grams are sorted in training so the
normalizer for each class history is only computed once (not
once per word).

The perplexity results of Table 4 show exactly the same
trends as the RNN model. Speed-optimal, Povey and Fre-
quency classing all perform about the same, and much worse
than likelihood based classing. The use of speed regulariza-
tion has negligible effect on perplexities.

The runtime results of Table 5 also conform to the RNN
pattern. Speed optimal and Povey classing are the fastest, and
speed regularization cuts the runtime by 29 and 40% on the
larger sets. Table 6 summarizes the results in terms of relative
improvements for both Model M and the RNN-LM.

5. RELATION TO PRIOR WORK

Besides the methods mentioned earlier, Chen and Chu [22]
have tackled the problem of making better classes for Model
M from a likelihood perspective, and there has been recent in-
terest in hierarchical classing methods to improve the runtime
of neural network language models [12, 13, 14]. Morin and
Bengio [12], propose to represent each word with O(log |V |)
bits, thus implicitly defining a tree with individual words at
the leaves. The structure of this tree is inferred from Word-

Dataset OS Povey Freq LL LL+Reg
Treebank 154 154 154 135 136
Wikipedia 183 183 182 157 159
AFP 72.2 72.4 72.3 62.7 63.2

Table 4. Perplexities of different classing methods with
Model M.

Dataset OS Povey Freq LL LL+Reg
Treebank 1.02 1.02 1.11 1.20 1.14
Wikipedia 142 129 209 270 161
AFP 62.8 63.0 70.1 106 74.9

Table 5. Model M runtime using different classing Methods,
minutes per sweep through the training data.

Dataset M-PPL M-RT RNN-PPL RNN-RT
Treebank 12% 5.0% 4.5% 14%
Wikipedia 13 40 7.8 62
AFP 12 29 9.6 58

Table 6. Perplexity (PPL) reductions of speed regulariza-
tion over speed-optimal classing, and runtime (RT) improve-
ment of speed regularization over pure likelihood classing for
Model M (M-) and RNN-LM (RNN-) implementations.

Net, and the bits are sequentially predicted on a path from the
root to a leaf. Mnih and Hinton [13] use EM to cluster con-
tinuous space word representations into a many-level hierar-
chy, and attempt to maintain approximately balanced struc-
tures for computational efficiency. The SOUL architecture
[14] also takes a hierarchical prediction approach based on
continuous space representations, but in practice adds only
one extra layer of prediction beyond the two-level schemes
we have focused on. Our work differs from these in adding
the exact measure of computational cost to the objective func-
tion, and optimizing a combined likelihood and speed objec-
tive. Multi-layer hierarchies may benefit from our approach
as well.

6. CONCLUSION
We have seen that likelihood-optimizing classing methods re-
sult in classes that induce better language models than speed
optimizing methods. To achieve some of the benefits of speed
optimizing methods, we propose the addition of a speed regu-
larization term to the traditional likelihood objective function.

In all test conditions, we observe a consistent positive pat-
tern by using speed regularization. The run-times decrease
substantially, and the perplexity of likelihood based classing
is maintained. Since the use of speed regularization is very
simple to implement and imposes essentially no extra over-
head in determining the classes, it should certainly be used.

Acknowledgments
We thank Dan Povey and Tomas Mikolov for insightful discussions.

8240



7. REFERENCES

[1] P.F. Brown, V.J. Della Pietra, P.V. deSouza, J. Lai, and R.L.
Mercer, “Class-based n-gram models of natural language,”
Computational Linguistics, vol. 18, no. 4, 1992.

[2] R. Kneser and H. Ney, “Improved clustering techniques
for class-based statistical language modeling,” in Proc. Eu-
rospeech, 1993.

[3] Sven Martin, Jrg Liermann, and Hermann Ney, “Algorithms
for bigram and trigram word clustering,” Speech Communica-
tion, vol. 24, no. 1, pp. 19 – 37, 1998.

[4] J. Goodman, “Classes for fast maximum entropy training,” in
Acoustics, Speech, and Signal Processing, 2001. Proceedings.
(ICASSP ’01). 2001 IEEE International Conference on, 2001.

[5] S. Chen, “Performance prediction for exponential language
models,” in NAACL-HLT, 2009.

[6] S. Chen, “Shrinking exponential language models,” in NAACL-
HLT, 2009.

[7] H. Schwenk and J.L. Gauvain, “Connectionist language mod-
eling for large vocabulary continuous speech recognition,” in
Acoustics, Speech, and Signal Processing (ICASSP), 2002
IEEE International Conference on. IEEE, 2002, vol. 1, pp. I–
765.

[8] Y. Bengio, R. Ducharme, Vincent, P., and C. Jauvin, “A neural
probabilistic language model,” Journal of Machine Learning
Reseach, vol. 3, no. 6, 2003.

[9] Holger Schwenk, “Continuous space language models,” Com-
puter Speech and Language, vol. 21, no. 3, pp. 492 – 518,
2007.

[10] Tomas Mikolov, Martin Karafiat, Jan Cernocky, and San-
jeev Khudanpur, “Recurrent neural network based language
model,” in Interspeech, 2010.

[11] Tomas Mikolov, Stefan Kombrink, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur, “Extensions of recurrent neu-
ral network based language model,” in ICASSP, 2011.

[12] F. Morin and Y. Bengio, “Hierarchical probabilistic neural net-
work language model,” in Proceedings of the international
workshop on artificial intelligence and statistics, 2005, pp.
246–252.

[13] A. Mnih and G.E. Hinton, “A scalable hierarchical distributed
language model,” in Advances in neural information process-
ing systems, 2009, vol. 21, pp. 1081–1088.

[14] Hai-Son Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and
F. Yvon, “Structured output layer neural network language
model,” in ICASSP, 2011.

[15] Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas Burget,
and Jan Cernocky, “Strategies for Training Large Scale Neural
Network Language Models,” in ASRU, 2011.

[16] Tomas Mikolov, “Rnntoolkit
http://www.fit.vutbr.cz/ imikolov/rnnlm/,” 2012.

[17] Daniel Povey, ,” 2012, personal correspondence.

[18] G. Zweig, J.C. Platt, C. Meek, C.J.C. Burges, A. Yessenalina,
and Q. Liu, “Computational approaches to sentence comple-
tion,” in Proc. Association of Computational Linguistics, 2012.

[19] J. Wu and S. Khudanpur, “Efficient training methods for max-
imum entropy language modeling,” in Interspeech, 2000.

[20] S. Chen, L. Mangu, B. Ramabhadran, R. Sarikaya, and
A. Sethy, “Scaling shrinkage-based language models,” in
ASRU, 2009.

[21] G. Zweig and S. Chang, “Personalizing Model M for Voice-
search,” in ICSLP 2011, 2011.

[22] S.F. Chen and S.M. Chu, “Enhanced word classing for model
m,” in Interspeech, 2010.

8241


