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ABSTRACT

In Computer-Aided Pronunciation Training, we hope to specify the
type of mispronunciation, or Error Pattern (EP), the language learner
has made as a more effective feedback. But derivation of EPs usually
requires expert knowledge and pedagogical experiences, which is
not easy to obtain for each pair of target and native languages. In this
paper we propose a preliminary framework toward unsupervised dis-
covery of EPs from a corpus of learners’ recordings. We use Univer-
sal Phoneme Posteriorgram, derived from Multi-Layer Perceptron
trained with a corpus of mixed languages, as features to bring su-
pervised knowledge into the unsupervised task. We also use Hierar-
chical Agglomerative Clustering algorithm to explore sub-segmental
variation of phoneme segments for distinguishing EPs. We tested
K-means (assuming known number of EPs) and Gaussian Mixture
Model with minimum description length principle (estimating un-
known number of EPs) for EP discovery. Preliminary experimental
results illustrated the effectiveness of the proposed framework, al-
though there is still a long way to go compared to human annotators.

Index Terms— Pronunciation Error Pattern Discovery, Univer-
sal Phoneme Posteriorgram, HAC, K-means, GMM-MDL, Rand In-
dex

1. INTRODUCTION

Speaking two or more languages is not only advantageous but in
fact necessary for people in the era of a globalized world. Many
Computer-Aided Pronunciation Training (CAPT) systems have been
developed in recent years to meet the strong demand of second lan-
guage learning [1][2][3][4][5][6]. In such systems, in order to gen-
erate useful feedback for language learners to improve their skills,
it is preferred to offer not only numerical scores reflecting their lan-
guage proficiency, but also the specific types of error they have made.
Such types of error are usually referred to as Error Patterns (EPs),
or the patterns of erroneous pronunciation frequently produced by
language learners, usually caused by some articulator mechanism
present in the target language but missing in their native languages
[6][7]. This implies when N languages are considered, there can
be in general N2 sets of EPs for each pair of native and target lan-
guages.

We have been working with Chinese language teachers in our
previous works [8][9]. They summarized and defined the most fre-
quent EPs made by Chinese learners based on their expert knowl-
edge and pedagogical experiences. They also made great effort to
label a whole set of corpus of Chinese learners’ recordings, includ-
ing manually labeling all the phoneme segments for all utterances as

either correct pronunciation or one of the EPs. Such manual labeling
process is very time consuming. Some approaches were proposed to
automatically derive the rules for EPs. Some began with the pronun-
ciation error rules induced by experts in the literatures of second lan-
guage learning [6][10], and some compared the orthographic tran-
scriptions with the actual pronunciation annotated by human listen-
ers [11] or free-phone recognition output from an automatic speech
recognition (ASR) engine [12]. All these approaches still require ei-
ther expert knowledge, time-consuming human labeling or reliable
ASR results.

On the other hand, substantial effort has been made in recent
years on unsupervised speech pattern discovery [13][14][15], with a
goal to bypass the need for human annotated data for model training
in speech recognition. Because building traditional ASR systems
based on the HMM framework for each language and each acoustic
condition can be costly, automatically discovering speech patterns
based on the acoustic signal characteristics from a corpus becomes
an attractive alternative. These situations are similar to the task of
EP detection: lack of well annotated corpus. What is more, for EP
detection the need for expertise to define and label EPs may be even
more difficult and expensive.

In this paper, we learn the experiences of unsupervised speech
pattern discovery, and propose a preliminary framework for auto-
matic discovery of EPs from a corpus of learners’ recordings with-
out relying on expert knowledge. This is achieved by Universal
Phoneme Posteriorgram (UPP) extracted from Multi-Layer Percep-
tron (MLP) trained with a corpus of mixed languages, plus the Hi-
erarchical Agglomerative Clustering (HAC) for exploring the sub-
segmental variation of EPs. Below, section 2 introduces the pro-
posed framework, and section 3 reports the preliminary experimental
results. The conclusions are in Section 4.

2. PRONUNCIATION ERROR PATTERN DISCOVERY

2.1. Problem definition

Here we assume the task is to discover the EPs for each phoneme
given a corpus of learners’ voice. We also assume the text transcrip-
tion of the utterances in this corpus is available, so forced alignment
can be performed and the learners’ voice are divided into segments
corresponding to phonemes. We can thus focus on one phoneme at
a time: each time we are given a set of acoustic segments corre-
sponding to a specific phoneme, and the goal is to divide this set into
several clusters, each of which corresponds to an EP. Furthermore,
because the percentage of correct pronunciation in our corpus is far
more than mispronunciation, we excluded the correctly pronounced
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Fig. 1. Proposed framework for unsupervised EP discovery.

segments before clustering to avoid data imbalance problem.

2.2. Framework overview

Figure 1 shows the proposed framework for unsupervised EP dis-
covery. First we extract frame-level feature vectors o1, o2, ..., ot, ...
for each phoneme segment. In this work we primarily choose to use
UPP as the frame-level feature vectors [16]: We train an MLP with
some large corpus of mixed languages. The output target is the set
of acoustic units for the mixed languages. Then we feed each MFCC
frame from learners’ recording into this MLP, and the output poste-
rior probability vector is the frame-level feature vector.

Next we apply HAC to merge adjacent frames with similar
acoustic features into Np sub-segments [15]. The number of sub-
segments Np is same for each specific phoneme p, but can be
different for different phonemes. The averages of frame-level fea-
ture vectors in Np sub-segments are denoted as X̄1, X̄2, ..., X̄Np

respectively. Then we concatenate these averaged feature vectors
into one super-vector X as the segment-level feature vector. The
segment-level feature vectors corresponding to each phoneme are
then clustered into different EPs by an unsupervised algorithm. In
this preliminary work we utilize K-means and Gaussian Mixture
Model (GMM) with minimum description length (MDL) principle
for unsupervised clustering.

The HAC for producing segment-level feature vectors is impor-
tant here. It not only unifies the dimensionality of feature vectors for
each phoneme p, with properly chosen number of sub-segments Np,
the differences among EPs can also be better retained. Because the
number of frames in each segment varies, we can not simply con-
catenate all the frame-level features into the segment-level feature
vector, nor average all the frame-level feature vectors into one. The
reason for the latter is that the difference between EPs and their cor-
responding canonical pronunciation can be very subtle, often only
by sub-segmental realization, and averaging all frames in a segment
may fail to capture such subtle evidence. HAC arranges the frames in
a segment into tree-structured hierarchy, in which different threshold
of similarity among frames give different numbers of sub-segments
out of this one segment. By tuning Np we can thus optimize the
granularity of our feature vectors for each phoneme p.

<Supervised Condition> <Unsupervised Condition>

<Acoustic space>

<Posterior space>

Supervised
classifier

Supervised
classifier

Pronunciation pattern A by different speakers

Pronunciation pattern B by different speakers

Fig. 2. The effect of mapping from acoustic space to posterior space
in supervised and unsupervised learning.

2.3. Universal Phoneme Posteriorgram

Posterior probability vector has been widely used in CAPT and
unsupervised speech pattern discovery. The well-known Goodness
Of Pronunciation (GOP) is calculated based on the posterior prob-
ability of target pronunciation [17]. Some works used improved
GOP with pre-defined thresholds to find mispronounced segments
[18], some further incorporated GOP-based mispronunciation de-
tector with EP network to boost the performance [5][8], and some
utilized log-likelihood ratio or posterior probability vectors as input
features [9][19][20][21] of discriminative classifiers such as Support
Vector Machine (SVM). Also many works of pattern discovery have
adopted posteriorgrams as the features for further processing. Some
derived posteriorgram with GMM trained with the target corpus
[13], and some with MLP trained with another large corpus [14].

The goal of utilizing MLP obtained with supervised training for
posteriorgram feature extraction is to bring the information of acous-
tic space partitioning with known pronunciation units into under-
resourced tasks [14][16]. As illustrated in Figure 2, in the upper
left the acoustic instances of two different pronunciation patterns A
and B scatter over the acoustic space. Because they are produced by
many speakers, the speaker variation and pronunciation variation are
mixed together. Under supervised condition, the labels of pronunci-
ation patterns are given, and we can train a classifier (e.g. the MLP
here) which focus on distinguishing different pronunciation patterns.
Therefore in the lower left the two pronunciation patterns A and B
become easier to distinguish in the posterior space, despite they are
produced by different speakers. However, under unsupervised con-
dition as in the upper right of Figure 2, we are no longer aware of
which instance belongs to which pattern. By borrowing the super-
vised classifier trained with annotated multi-speaker corpus from the
left, we can thus similarly map the instances from acoustic space to
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posterior space, on which the speaker variation may be removed to a
certain degree while preserving the traits of pronunciation variation.

2.4. Unsupervised Clustering Algorithms

In the preliminary work here we use two algorithms for EP clus-
tering: K-means and GMM with minimum description length prin-
ciple (GMM-MDL)[22]. For K-means we assume the number of
clusters k is known, which is the number of EPs of each phoneme
summarized by language teachers. Several different distance mea-
sures are considered: Euclidean distance deuc(x, y), Cosine distance
dcos(x, y) and Symmetric KL Divergence dkld(x, y), where

dcos(x, y) = 1− x · y
|x||y| , (1)

dkld(x, y) =
1

2

D∑
i=1

(xi · log
xi

yi
+ yi · log

yi
xi

), (2)

x and y are the segment-level feature vectors with dimensionality D,
and xi, yi are their i-th component respectively.

To automatically learn the number of clusters while discovering
EPs, we use GMM-MDL algorithm. We trained one GMM for each
phoneme p, and then perform maximum-likelihood (ML) classifica-
tion to assign instances to clusters. The GMM-MDL algorithm is
capable of estimating the optimal number of Gaussians in GMM,
which is the number of EPs in our application. The objective func-
tion to be optimized is:

F (Sp, θp) = logPr(Sp|θp)−
1

2
|θp|log(|Sp|Dp), (3)

where θp is the parameters of GMM, Sp the set of segment-level
feature vectors of dimensionality Dp with size |Sp| . |θp| the total
number of continuously valued free variables to specify θp:

|θp| = Mp(1 +Dp +
(Dp + 1)Dp

2
)− 1, (4)

where Mp is the number of Gaussians. Eq. 4 comes from the fact
that for each Gaussian there are 1 prior probability, Dp means and
(Dp+1)Dp

2
variables for covariance matrix. Because the Mp priors

sum to one, the overall degree of freedom is reduced by 1. In Eq. 3
the first term on the right hand side is the log-likelihood, and the sec-
ond term represents the model complexity. So the number of clusters
is estimated by the balance between the two considerations.

3. EXPERIMENTS

3.1. Corpus, EP definition and annotation

Our corpus was collected in year 2008 and 2009. 278 learners study-
ing Mandarin Chinese in National Taiwan University from 36 differ-
ent countries with balanced gender and a wide variety of native lan-
guages joined the recording tasks. Each learner was asked to produce
a set of 30 phonetically balanced and prosodically rich sentences,
each containing 6 to 24 characters. These 30 sentences covered al-
most all frequently used Mandarin syllables and tone patterns.

The acoustic units for EP definition in this work are Mandarin
phonemes represented in Zhuyin. There is a total of 39 canonical
Mandarin phoneme units, and 152 EPs were summarized by lan-
guage teachers based on their expert knowledge and pedagogical ex-
periences, to cover most frequent EPs made by Mandarin Chinese
learners. This means in average we have 152/39 ≈ 3.9 EPs per

phoneme unit. The definition of EPs includes not only phoneme-
level substitution, but also insertion and deletion, and is not limited
to any specific corpus including the one mentioned above [8].

Two annotators labeled the surface pronunciation of each acous-
tic segment in each utterance in the above corpus as correct pronun-
ciation or one of the EPs. We used the labels from one annotator as
the reference EPs in our experiments, and the other in finding out the
consistency between human annotators.

3.2. Feature extraction and HAC

The training corpus of the MLP for UPP derivation included the
ASTMIC Mandarin corpus (read speech produced by 95 males and
95 females with a total length of 24.6 hours), and the training set of
TIMIT English corpus (462 speakers from eight dialect regions of
the USA, with a total length of 3.9 hours). The MLP training target
was the union of the monophone sets of Mandarin and English, con-
sisting of 35 and 38 monophones respectively, without short pause
and silence. Logarithm of UPP features (log-UPP) and MFCC (39
parameters, c0 to c12 plus first and second derivatives) were also
tested as features.

Three different choices of number of sub-segments Np divided
by HAC was considered: Np = 1, Nopt and Nmax. For Np = 1 we
did not divide a segment into smaller sub-segments. For Np = Nopt

we tuned Np for each phoneme p by optimizing the performance.
For Np = Nmax we set Np to be the number of frames in the short-
est segment, so for the shortest segment we treat each frame as a
sub-segment.

3.3. Evaluation Metric

There are many different metrics for evaluating clustering algo-
rithms. Cluster purity is a good example, although it tends to favor
larger number of clusters. Here we adopt the Rand Index [23] for
its balanced consideration between the similarity within clusters and
dissimilarity among different clusters.

We first define the True Acceptance (TA), True Rejection (TR),
False Acceptance(FA) and False Rejection (FR) based on all instance
pairs as in Table 1 [14]. For example, if an instance pair belongs to
the same cluster in both reference and prediction result, it is counted
as one TA. We can see TA and TR represent respectively the within-
cluster and between-cluster accuracies. The Rand Index is then de-
fined as:

RI =
TA+ TR

TA+ TR+ FA+ FR
. (5)

Since the mispronounced segments for each phoneme were clustered
for EPs individually, we report the Average Rand Index (ARI) over
all phonemes p in Mandarin phoneme set P :

ARI =
1

|P |
∑
p∈P

RI(p). (6)

3.4. Experimental Results

3.4.1. K-means with known number of EPs

Table 2 reports the ARI using K-means with known number of EPs
for each phoneme. Different rows represent different features and
different distance measures, and different columns represent differ-
ent numbers of sub-segments Np derived by HAC. We see the best
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Table 1. The definition of True Acceptance (TA), True Rejection
(TR), False Acceptance(FA) and False Rejection (FR) in our experi-
ment.

For all instance Reference clusters
pairs beloning to same different

Predicted same TA FA
clusters different FR TR

performance was achieved by log-UPP with cosine distance regard-
less of Np being 1, Nopt or Nmax. Although there is still a gap
from the high consistency achieved by the human annotator, the re-
sults verified that UPP yielded better discriminability among EPs
in the posterior space. Also note that the second-best result oc-
curred with UPP and Symmetric KL-Divergence, which conformed
the fact that UPP represents posterior probability distribution and
KL-Divergence is a good distance measure for it [14].

By comparing different columns we can see that Np = Nopt

gave better results than Np = 1 and Np = Nmax. Note because we
should not be able to compare the clustering performance with the
reference under unsupervised condition, the results given by Np =
Nopt is the upper bound of ARI achievable by properly set the num-
ber of sub-segments with the HAC. Yet this still verified that differ-
ence among EPs may lie in sub-segmental realizations, which can
be better explored with HAC. Simply set Np = 1 gave too coarse
features, while partitioning each segment into Nmax sub-segments
may be over-analyzing and introduce noise.

Table 2. Experimental results in Average Rand Index (ARI) (%) with
varying features, distance measures and number of sub-segments
using K-means algorithm with known number of EPs for each
phoneme.

Feature Algorithm
Np: number of sub-segments

1 Nopt Nmax

MFCC K-means,deuc 57.78 58.73 57.65
MFCC K-means,dcos 57.65 58.58 57.39
UPP K-means,deuc 56.17 57.34 56.25
UPP K-means,dcos 56.40 57.71 56.70
UPP K-means,dkld 58.15 58.94 57.47

log-UPP K-means,deuc 57.03 57.58 56.63
log-UPP K-means,dcos 58.46 59.43 58.36

Human Annotator 71.05

3.4.2. GMM-MDL with automatically estimated number of EPs

Table 3 shows the results of ARI using GMM-MDL. The numbers in
the brackets are the difference of the automatically estimated num-
ber of patterns compared to that summarized by human experts, av-
eraged over all phonemes. We can see similar trend of ARI as in
Table 2: log-UPP yielded the best performance, and Nopt consider-
ing the sub-segmental realization was better. Yet the achieved ARI
in Table 3 were lower than those of Table 2, obviously due to the lack
of expert knowledge about the number of EPs. Note both UPP and
log-UPP yielded 1 to 3 more automatically derived EPs than human-
defined EPs in average. In contrast MFCC resulted in less number

of clusters. This further showed the better discriminating power of
UPP in discovering EPs.

4. CONCLUSION

In this paper we proposed a preliminary framework for unsupervised
discovery of pronunciation Error Patterns. We utilized Universal
Phoneme Posteriorgram derived from MLP trained with a corpus
of mixed languages, to reduce speaker variation while maintaining
pronunciation variation. The experimental results showed that Uni-
versal Phoneme Posteriorgram successfully boosted the discriminat-
ing power among EPs compared to MFCC, in terms of both higher
Average Rand Index and more number of clusters.

Table 3. Experimental results in Average Rand Index (ARI) (%) and
average of differences in number of clustered EPs compared to ref-
erence EP (in brackets), with varying features and number of sub-
segments, using GMM-MDL with unknown number of EPs

Feature Algorithm
N: number of sub-segments

1 Nopt Nmax

MFCC GMM-MDL
53.96 56.28 51.72
(-0.67) (-0.64) (-1.18)

UPP GMM-MDL
54.64 56.20 54.39
(2.79) (2.59) (1.95)

log-UPP GMM-MDL
54.37 56.58 54.58
(2.08) (1.49) (0.74)
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