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ABSTRACT

Narrowband spectrograms of voiced speech can be modeled as an
outcome of two-dimensional (2-D) modulation process. In this pa-
per, we develop a demodulation algorithm to estimate the 2-D ampli-
tude modulation (AM) and carrier of a given spectrogram patch. The
demodulation algorithm is based on the Riesz transform, which is a
unitary, shift-invariant operator and is obtained as a 2-D extension
of the well known 1-D Hilbert transform operator. Existing methods
for spectrogram demodulation rely on extension of sinusoidal de-
modulation method from the communications literature and require
precise estimate of the 2-D carrier. On the other hand, the proposed
method based on Riesz transform does not require a carrier estimate.
The proposed method and the sinusoidal demodulation scheme are
tested on real speech data. Experimental results show that the de-
modulated AM and carrier from Riesz demodulation represent the
spectrogram patch more accurately compared with those obtained
using the sinusoidal demodulation. The signal-to-reconstruction er-
ror ratio was found to be about 2 to 6 dB higher in case of the pro-
posed demodulation approach.

Index Terms— Riesz transform, Spectrogram demodulation.

1. INTRODUCTION

Most speech analysis algorithms work either on the spectral modu-
lations (linear prediction [1], cepstral analysis [2]) or temporal mod-
ulations (modulation filtering [3], frequency-domain linear predic-
tion [4]) of speech, independently, and have been quite successful
in applications such as speech coding [5, 6] and automatic speech
recognition [7, 8]. Some recent results have shown that it is ad-
vantageous to work with both spectral and temporal modulations
(spectro-temporal modulation) simultaneously [9–15]. These algo-
rithms work in the time-frequency plane and are referred to as two
dimensional (2-D) techniques for speech signal analysis. The spec-
trogram demodulation problem we address in this paper fits into this
framework. Local regions of narrowband speech spectrograms can
be modeled as an outcome of 2-D modulation process with ampli-
tude modulation (AM) and carrier being related to the vocal tract
response and pitch dynamics, respectively [10, 16–20]. The aim
in demodulation is to estimate the AM and carrier given a spec-
trogram patch. Figure 1 illustrates the demodulation and modula-
tion of spectrograms. Spectrogram demodulation has found applica-
tion in problems such as speaker separation [17] and formant esti-
mation [18]. Before proceeding with other applications, we need
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Fig. 1. Illustration of the 2-D demodulation and modulation process.

to develop accurate methods of spectrogram demodulation. Cur-
rent methods of spectrogram demodulation require an estimate of
the underlying carrier [10, 17, 19] to estimate the AM. In this paper,
we propose an incoherent approach (not requiring carrier estimates)
based on the Riesz transform, which is an extension of the Hilbert
transform to 2-D, to address the problem of spectrogram demodu-
lation. Riesz transform was recently introduced in the optics com-
munity, where it is also known as the spiral-phase quadrature trans-
form [21]. Riesz-transform-based methods have found applications
in problems such as fingerprint analysis [22] and demodulation of
digital holograms [23]. In this paper, we employ the Riesz transform
for demodulating narrowband speech spectrograms.

The following notations are used in this paper: S(m) is used to
denote a spectrogram, where m = (`,m) with ` andm denoting the
frame and frequency indices, respectively. A patch of spectrogram
is denoted by SW (m) and is obtained by multiplying S(m) with
a 2-D window W (m). Fourier transform of SW (m) is denoted by
ŜW (Ω), Ω = (Ω`, Ωm), with Ω` and Ωm denoting the spatial fre-
quency variables along ` (time axis) andm (frequency axis), respec-
tively.

The paper is organized as follows: In Section 2, we discuss the
signal model and formulate the 2-D demodulation problem. We next
present the Riesz transform and develop a Riesz-transform-based
spectrogram demodulator in Section 3. The demodulation algorithm
is tested on real speech data and the results are compared with that of
sinusoidal demodulation in Section 4. We conclude with Section 5,
where the results are summarized and the relative merits and de-
merits of the proposed algorithm compared with other demodulation
algorithms are discussed.

2. PROBLEM FORMULATION

We adopt the spectrogram patch model similar to that used by Wang
and Quatieri in [17] but with additional flexibility. Our model allows
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the spatial frequency and the orientation of the 2-D carrier to be a
function of m. This generalization of the carrier allows us to model
pitch dynamics more accurately. That is, SW (ω) can be expressed
as

SW (m) = V (m) (D + cos Φ(m)) ,

= V (m)D︸ ︷︷ ︸
SW,l(ω)

+V (m) cos Φ(m)︸ ︷︷ ︸
SW,b(ω)

, (1)

where Φ(m) = ω(m) [` cos θ(m) +m sin θ(m)] . ω(m) and
θ(m) denote the spatial frequency and orientation at the point
m = (`,m). We address the problem of estimating the AM, V (m),
and the carrier, cos Φ(m), given SW (ω). SW,l(ω) and SW,b(ω)
in (1), are the lowpass and the bandpass components of SW (m),
respectively.

For the pitch harmonics to be modeled as a 2-D cosine, we have
empirically observed that the size of the 1-D window used should
be between 3 to 6 times of the pitch period. In order to satisfy the
requirement, we have used 20 ms and 30 ms windows for female and
male speakers, respectively, for computing spectrograms.

3. RIESZ-TRANSFORM-BASED DEMODULATION OF
SPEECH SPECTROGRAMS

The Riesz transform is a 2-D extension of Hilbert transform [24],
and is associated with frequency response ĥR(Ω):

ĥR(Ω) =
−jΩ` + Ωm√

Ω2
` + Ω2

m

. (2)

From (2), we see that the Riesz transform is a unitary operator, that
is, it has an all pass behavior. The phase response associated with
Riesz transform is shown in Figure 2. Given a 2-D signal of the
form a(m) cos Φ(m), its Riesz transform is given by [25]

R{a(m) cos Φ(m)} = ejβ(m)a(m) sin Φ(m), (3)

where R denotes the Riesz operator, and β(m) indicates local ori-
entation angle of SW (m) at m. β(m) gives the angle of the vector
in the direction of minimum change in a 2-D function. The concept
of orientation is explained with the help of Figure 3, where in we
show a synthetic cosine oriented at π

4
radians to the horizontal axis,

and a spectrogram corresponding to real speech signal. In both cases
arrows indicate the local orientation, which is defined as the direc-
tion along which the local variation is minimum. While in the case
of a synthetic cosine, the orientation is constant throughout, the ori-
entation is function of m in the case of a real spectrogram. From the
figure, we see that the local orientation is related to pitch dynamics.
Multiplying both sides of (3) with e−jβ(m), we get that

e−jβ(m)R{a(m) cos Φ(m)} = a(m) sin Φ(m). (4)

The operator on the left hand side of (4), called the Vortex oper-
ator [21], is denoted by V{·} = e−jβ(m)R{·}. Vortex operator
exhibits quadrature property similar to that of the 1-D Hilbert trans-
form. We use the quadrature property of the vortex operator to carry
out spectrogram demodulation.

Figure 4 shows the block diagram of the Riesz-transform-
based demodulator of SW (m). The spectrogram patch SW (m) is
passed through a bandpass filter to retain only SW,b(m) compo-
nent of SW (m). Since SW,b(m) is of the form V (m) cos Φ(m),
the output of Vortex operator can be written as V (m) sin Φ(m).

Ω�

Ωm

∠ĥR(Ω)

Fig. 2. Phase response associated with the Riesz transform
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Fig. 3. (Color in electronic version) Illustration of the concept of
orientation in spectrograms. (a) shows a 2-D cosine with arrow in-
dicating its orientation; (b) illustrates the concept of orientation with
respect to a real spectrogram patch. We observe that the local orien-
tation changes with m and is related to the pitch dynamics.

The outputs are then combined to form a 2-D complex signal,
SW,c = SW,b + jV{SW,b} = V (m)ejΦ(m), from which the AM
and carrier are extracted. β(m) is computed using 2-D principal
component analysis, which is equivalent to the structure tensor
method [23] in image processing

Let Ṽ (m) and Φ̃(m) denote the estimated AM and phase of
SW (m), and let S̃W (m) denote the estimate of SW (m) obtained
from Ṽ (m) and Φ̃(m). Then,

S̃W (m) = Ṽ (m)[D̃ + cos Φ̃(m)], (5)

where D̃ = arg min
D
||SW (m) − S̃W (m)||22 [17]. Let S̃i,jW (m) de-

note (i, j)th reconstructed spectrogram patch, S(m) is reconstructed
from Si,jW (ω) corresponding to different values of i and j using
overlap-add in the least-squares sense (OLA-LSE) [17].

S̃(m) =

∑
i,j

S̃i.jW (m)W (Fj −m,T i− n)∑
i,j

W 2(Fj −m,T i− n)
, (6)

where T and F denote the step size of the 2-D window along the
time and frequency axes, respectively. S̃(m) is combined with the
phase of the original STFT, which is then inverted using OLA-LSE
criterion [26] to get an estimate of the speech signal, s̃(n). The
inversion formula is given by,

s̃(n) =

∑
l

s̃w(n, l)w(T l − n)∑
l

w2(T l − n)
, (7)
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Fig. 6. (Color in electronic version) Spectrogram corresponding to the speech of fS1: (a) Original spectrogram, computed using 20 ms
Hamming window and 512-point DFT, (b) Spectrogram reconstructed from the AM and carrier obtained using Riesz-transform-based de-
modulator, (c) Same as (b) but using sinusoidal demodulation. Rectangles indicate some regions where Riesz-transform-based demodulator
gives accurate estimates compared with sinusoidal method.

Bandpass 
filter

V{·}

+

j

V (m) sinΦ(m)

SW (m) SW,b(m) = V (m) cosΦ(m) SW,c(m)

V (m)
|·|

∠
cosΦ(m)

Fig. 4. Block diagram illustrating the Riesz-transform-based demod-
ulation. |·| and ∠(·) denote the modulus and angle, respectively.

where s̃w(n, `) is the inverse Fourier transform of the `th frame of
estimated STFT.

4. RESULTS

The proposed demodulation algorithm is tested on real speech data
taken from the TIMIT database [27]. Speech files corresponding to
all-voiced sentences “S1: Where were you while we were away” and
“S2: He will allow a rare lie” were chosen. Male and female speak-
ers are distinguished by a prefixes ‘m’ and ‘f’ before the sentence
label. ‘mS1,’ ‘fS1,’ ‘mS2,’ and ‘fS2’ correspond to speakers with
speaker ID ‘DAC2,’ ‘GJD0,’ ‘GJF0,’ and ‘JMG0’, respectively, in
the TIMIT database. Before performing demodulation, silence re-
gions were removed manually and the speech was downsampled to
8 kHz. Speech signal is normalized to have peak time-domain mag-
nitude of one. Preprocessing steps were carried out using Praat [28].
Since the model assumes that the 1-D window duration is 3 to 6
times the pitch period, a 30 ms Hamming window is used for male
speakers and a 20 ms Hamming window is used for female speakers.
Spectrogram is computed using 512-point discrete Fourier transform
(DFT) and is demodulated in patches of size 600 Hz in frequency
and 100 ms in time. A 2-D Hamming window is used to select a
spectrogram patch.

The carrier estimate required for sinusoidal demodulation
technique, with which we compare the performance of the Riesz-
transform-based approach, is estimated from the center frequency of
the bandpass component as described in [10]. Butterworth filters of
10th order are used for highpass and lowpass filtering in sinusoidal
demodulation. The cutoff frequency of the highpass filter and the
bandwidth of the lowpass filter are taken to be half of the estimated
spatial frequency. Bandpass filter used in the Riesz-transform-
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Fig. 5. (Color in electronic version) Histogram of ζp corresponding
to the different speech files used. Blue and brown colors indicate
histograms of Riesz and sinusoidal methods, respectively.

based demodulator is a 10th-order Butterworth filter with its center
frequency corresponding to that of the estimated 2-D carrier, and
having a bandwidth equal half of the estimated spatial frequency.

The accuracy of demodulation is measured in terms of how well
the estimated AM and carrier can represent the spectrogram patch
SW (Ω). This is quantified by first estimating the spectrogram patch
from the Ṽ (m) and cos Φ̃(m). Once we have ŜW (m), the demod-
ulation performance is then quantified using the metric ζp:

ζp =

∑
m|SW (m)− S̃W (m)|2∑

m|SW (m)|2 . (8)

Figure 5 shows the histogram of ζp for different speech files for
both Riesz-transform-based demodulation (blue) and sinusoidal de-
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Fig. 7. (Color in electronic version) AM and carrier corresponding
to fS1. Top and bottom rows indicate the AM and carrier of 6(a)
obtained using Riesz and sinusoidal demodulation techniques. Rect-
angles are marked at same position as in Figure 6

modulation (brown). The histograms of ζp corresponding to Riesz-
transform-based demodulation are centered at lower values of ζp
compared with that of sinusoidal demodulation indicating accurate
demodulation by the proposed method.

Figure 6 shows the original spectrogram, S(m) corresponding
to ‘fS1,’ and its estimates, S̃(m) obtained using Riesz and sinusoidal
demodulation algorithms1. The Riesz-transform-based demodulator
gives accurate estimate of spectrogram compared with that the si-
nusoidal region, rectangular boxes enclose some regions where the
performance of the two algorithms differ significantly. The deterio-
ration in the performance of the sinusoidal method is largely due to
errors in carrier estimation. In Figure 7 we show the AM and car-
rier (reconstrcuted from AM and carrier of patches using equation
6 ) corresponding to the spectrogram in Figure 6. Comparing the
AM and carrier obtained using the two methods, we see that Riesz-
transform-based demodulation gives relatively smooth estimates of
AM and carrier and preserves time-frequency continuity. This is par-
ticularly evident in the regions enclosed by the rectangles.

An estimate of speech signal ŝ(n) is obtained using (7). Fig-
ure 8 shows the segmental SNRs of reconstructed speech. Speech
estimated from AM and carrier obtained using Riesz-transform-
based demodulation has higher segmental SNR compared with that
obtained using sinusoidal method in most frames. Regions where
the segmental SNRs drop sharply correspond to inharmonic regions
in the spectrograms. Global SNR and average segmental SNR for
different speech files are given in Table 1. Riesz-transform-based
method performs more accurately compared with the sinusoidal
demodulation in terms of both the global SNR as well as average
segmental SNR.

1Results on other files are available at sites.google.com/site/rdemod
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Fig. 8. (Color in electronic version) Segmental SNRs of speech files
reconstructed from the demodulated AM and carrier. Thick blue
line and black dashed lines correspond to Riesz based method and
sinusoidal methods, respectively.

Filename Global SNR Average segmental SNR
Sinusoidal Riesz Sinusoidal Riesz

mS1 14.60 19.35 14.33 21.54
fS1 11.08 13.38 9.61 14.74
mS2 16.62 22.68 16.16 23.52
fS2 11.22 14.99 13.34 19.81

Table 1. Comparison of global and average segmental SNRs of
speech reconstructed from sinusoidal and Riesz-transform-based de-
modulation techniques.

5. CONCLUSIONS

We have developed a demodulation algorithm for narrowband
speech spectrograms using the Riesz transform, which is a 2-D
extension of the Hilbert transform. We have modeled the spectro-
gram patch as a 2-D AM-FM signal, this model is similar to that
used by Wang and Quatieri in [17], but allows for the 2-D carrier
to be frequency modulated to model the pitch dynamics accurately.
In contrast to some 2-D demodulation algorithms such as Max-
Gabor demodulation [19], which uses scattered data interpolation
to estimate the AM, and sinusoidal demodulation [17] which uses
sinusoidal demodulation, the proposed demodulation algorithm does
not require 2-D carrier estimates, making AM estimation indepen-
dent of carrier estimation errors. Experimental results have shown
that Riesz method gives more accurate estimate of AM and carrier
compared with the sinusoidal method. As part of future work, we
would like to extend the signal model and the demodulation algo-
rithm to handle arbitrary 1-D window sizes along the lines of [10].
We would also like to examine the effect of improved accuracy in
AM and carrier estimates provided by the Riesz-transform-based
demodulator on applications such as speaker separation and formant
estimation.
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