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ABSTRACT

In this work we propose the calibrated-mean-opinion-score
(CMOS), which accounts for varying levels of precision
and bias across subjects in a listening test. We adopt the
Bayesian statistical framework, where the hyper-parameters
of priors are learned via empirical Bayes, and the posterior is
approximated by a computationally inexpensive variational
technique. As our experimental results show, CMOS is more
robust to noisy and biased subjects than MOS. As a result,
CMOS can be used to improve the reliability of listening test
results when a small test panel is used. To correct for the
subjects in the test panel, calibration signals are required.
Calibration signals are rated by a panel larger than the test
panel. The key to saving human labor and cost is that only a
few calibration signals are required, and that it is possible to
share calibration signals across listening tests.

Index Terms— Listening test, Speech quality, Bayesian
inference, bias

1. INTRODUCTION

Perceived quality of the speech or audio signal is often a key
performance indicator for communication network designers
and DSP engineers. Subjective quality tests are the most ac-
curate way to assess the quality of audio and speech [1, 2].
The main disadvantages of subjective tests are cost, human
labor, and time. Objective quality measures provide an esti-
mate for the speech or audio quality, but with less accuracy in
comparison with subjective listening tests [3–7].

Subjective ratings are influenced by a number of factors
including hearing, perception, judgment and mapping (trans-
lation of internal judgment into a quality score) [2]. All of
the aforementioned factors potentially introduce biases, i.e.
systematic shifts in the scores. Personal expectations, emo-
tions and mood of the subject affect the scores and produce
bias [8] [9] [10]. Mapping of judgments into scores intro-
duces bias in several ways including but not limited to con-
traction [11], centering [12] [13], range equalizing [14], and
stimulus spacing [15] [16] biases.

Reducing the biases is in general a difficult task. Biases
such as centering and range equalizing are considered as the
most difficult type to reduce [17]. One way to reduce cen-
tering and range equalizing biases is monadic (single stim-
ulus) tests such as Mean-Opinion-Score (MOS) [18], which
generally require large panel size to gain statistical signif-
icance [17]. Systextual design [19] systematically manipu-
lates the range and distribution of stimuli, and is another ap-
proach to reduce centering and range equalizing biases at the
cost of increasing the number of stimuli. Contraction bias is
reduced by multiple stimulus tests such as recommendation
ITU-R BS.1534-1 (MUSHRA) [20] or by a technique called
direct anchoring [21]. MUSHRA is known to be vulnerable
to range equalizing bias [22].

In this paper we propose a method to reduce the bias of
tests for a relatively small panel size. The main idea behind
the method is that it is not necessary for the large panel to rate
each and every test signal. Instead, it is sufficient to use the
large panel size only for rating a ‘calibration set’: a limited
number of signals (around 10 signals). We name the large
panel the ‘calibration panel’. It is, in principle, possible to
share the calibration set across several tests. The ‘test panel’
is the panel that rates the quality of the test material as well as
the calibration set. In our approach, the noisiness and system-
atic shifts of test panel subjects are characterized by jointly
modeling the quality ratings of the test panel and the calibra-
tion panel over the calibration set. The statistical character-
ization is then used to correct for the expected errors in the
test panel ratings. Combination of our method with single
stimuli testing such as [18] allows for reduction of centering
and range equalizing bias, while limiting the test panel size.
Also, biases due to affective judgments (expectations, mood,
and emotions) are reduced by our method since the responses
are corrected for. We use variational Bayesian statistical in-
ference methods to characterize the subjects.

Bayesian statistics facilitates the transfer of knowledge
from one listening experiment to the other via Bayesian pri-
ors. For example, we successfully characterize the subjects in
one database by using the prior context generated using other
databases of Supplement 23. Mathematically, priors are es-
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Fig. 1. Top Left: Variance of error (error = IOS-MOS) Top
Right: Bias (mean value) of error Bottom Left: IOS versus
MOS for a noisy subject Bottom Right: IOS versus MOS for
a biased subject

sential to shrinking the size of the calibration set, which is
the key to reducing the expensive human labor. Our work not
only motivates the addition of calibration sets to existing stan-
dardized procedures, but also motivates standardized datasets
that can provide ‘calibration’ signals and calibrated ratings.

The organization of the paper is as follows: in Section 2
we introduce the model, and in Section 3 the variational
Bayesian inference algorithm is presented. In Section 4 we
present the experimental results using Supplement 23 and
NOIZEUS. In Section 5 we discuss and analyze the implica-
tions of the study and conclude the paper.

2. MODEL

The widely used MOS is the average of Individual-Opinion-
Scores (IOSs):

MOSs =
1

m

m∑
i=1

IOSis

where IOSis is the rating given by individual i = 1, · · · ,m
to speech sample s = 1, · · · , N . We assume that for each
sample there is a true-score (TS), and that the following model
relates the IOS to TS:

IOSis = TSs + nis + bi

Prob(nis) = N (nis|0, λ−1
i ) (1)

where nis is the i-th subject Gaussian noise with vari-
ance λ−1

i , and bias bi. In practice the relation between IOSis
and TSs is more complex as subjects use a discrete finite
scale of one to five to express their opinion and their ratings

are not Gaussian distributed. However, we will show that our
model results in improved accuracy (with respect to MOS)
in the estimation of the underlying latent score TSs from ob-
servable rates IOSis. CMOS is the estimation of TS based on
the data and priors. Equation (1) implies that the precision λi
and the bias bi of subjects are stationary across signals.

Histograms of bias and variance of Supplement 23 sub-
jects are plotted in upper panels of Figure 1. Histograms illus-
trate that variance and bias change across Supplement 23 sub-
jects. The scatter plots of IOS versus MOS for the most im-
precise subject (A) and the most biased subject (B) are shown
in lower panels of Figure 1. IOS of subject A indicated very
little information about the MOS. Subject B does not rate any
speech signal as ‘bad’, and IOS of subject B is always lower
than MOS. As we will show later, Bayesian inference adjusts
the weight of subjects in CMOS based on their noise level,
and corrects for the shifts in the scores of each subject.

3. STATISTICAL INFERENCE FRAMEWORK

Compared to the standard MOS framework [18], our model
introduces additional complexity in the form of bias and vari-
ance variables for each subject. To maintain the generaliza-
tion capability of our model, we use a Bayesian formalism,
which uses priors to regularize the inference problem. Our
choice of priors allows for an efficient variational estimation
of the posterior. In other words, we avoid sampling of the
posterior by deliberately choosing priors with suitable math-
ematical properties.

The Gaussian-Gamma prior over bias and precision is de-
fined to be

Prob(bi, λi|β) = N
(
bi|0, (βλi)−1

)
Gamma

(
λi|aλ0 , bλ0

)
(2)

where

Prob(β) = Gamma
(
β|aβ0 , b

β
0

)
(3)

where aλ0 , bλ0 , aβ0 and bβ0 are ‘hyper-parameters’ set before
training that specify the strength of the priors. The hyper-
parameters roughly determine how noisy a subject can be.
We will discuss how hyper-parameters are set before train-
ing. Variable β does not correspond to an actual physical con-
cept and its role is to add flexibility to the joint prior over bi
and λi [23].

The priors in Equations (2) and (3) are conjugate to the
likelihood function derived from the model in Equation (1),
which allow us to derive an efficient iterative variational infer-
ence algorithm for estimating the posterior distribution over
parameters. The variational method is known as the mean-
field posterior approximation [24] [25] [23]. The derivation
is standard and we will not present it. We only state the itera-
tive equations as they provide insight into the implications of
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model in Equation (1),

µs = Vs

m∑
i=1

λ̂i

(
IOSis − b̂i

)
V −1
s =

m∑
i=1

λ̂i (4)

where µs is the estimate of the model for TSs which is up-
dated iteratively based on estimates of bias b̂i and precision λ̂i
for all subjects. Note how Equation (4) differs from averag-
ing done for MOS: the estimates of individual biases are sub-
tracted from the ratings, and each rating is weighted by the
precision of the subject. More precise subjects have heavier
weight in the estimate.

The iterative estimates of bias and precision are given by

b̂i = Vb

N∑
s=1

(IOSis − µs)

V −1
b = (N + β̂) (5)

where β̂ is the estimate of β at the last iteration. In Equa-
tion (5) the bias estimate for a subject is proportional to the
discrepancy between the subject ratings and the estimates of
true quality averaged over all samples. Since over-fitting is a
concern as more parameters are introduces, it is desirable that
the degree of freedom in Equation (1) provided by the bias
term is used only when sufficient data is available. Asymptot-
ically, as number of speech samples, N increases, the value
of β̂ become less relevant. On the other hand, the bias esti-
mates shrink toward zero because of β̂ for small N .

The estimates of subject precision is given by

λ̂i = aλ/bλ

aλ = aλ0 +N/2

bλ = bλ0 + 0.5

N∑
s=1

E
{
(IOSis − µs)2

}
−0.5Vb

{
N∑
s=1

(IOSis − µs)

}2

(6)

As Equation (6) shows, the precision estimate depends on
the second order moments of differences between subject rat-
ings and the estimates. Note that for small N , the hyper-
parameters aλ0 and bλ0 reduce the dependency of precision es-
timates to data.

Finally the updates for iterative estimates of β are given
by:

β̂ = aβ/bβ

aβ = aβ0 +m/2

bβ = bβ0 + 0.5mVb + 0.5

m∑
i=1

λ̂ib̂i
2

(7)
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Fig. 2. The curves show the average performance of MOS and
CMOS over 100 panels. The smallest- and largest- RMSE
determine the boundaries of the shaded areas.

The algorithm iteratively updates the estimates of model
parameters in Equations (4), (5), (6), and (7) until conver-
gence is achieved.

4. EXPERIMENTAL RESULTS

In this Section we demonstrate the effectiveness of CMOS.
We show how CMOS prevents large errors when small sub-
sets are used, and we present a brief study of calibration sig-
nals and hyper-parameters.

4.1. Dataset

ITU-T Supplement 23 is one of the few publicly avail-
able datasets. We test our method on experiments one
and three of Supplement 23, which contain absolute cat-
egory rating (ACR) tests. In the ACR test subjects grade
the speech samples on a discrete opinion scale: ‘Excel-
lent’, ‘Good’,‘Fair’,‘Poor’,‘Bad’. The data consist of seven
databases with speech samples from different languages dis-
torted by different conditions. The panel size is 24 subjects.

4.2. RMSE Performance

In our first experiment, we considered test panel sizes of 1 to
15. For each of the seven databases of Supplement 23 and for
each panel sizem > 1, we constructed 100 test panels by ran-
domly drawingm subjects from the pool of 24 subjects in that
database. We defined the error as the difference of the results
obtained from all 24 subjects and the results obtained from the
test panel. We randomly drew 10 signals from the database to
form our calibration set. We used all 24 subjects as the cal-
ibration panel. Prior to testing each database, we used the
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Fig. 3. Effect of calibration set on RMSE. The area between
the smallest and largest RMSE is shaded.

remaining databases to learn the hyper-parameters aλ0 , bλ0 , aβ0
and bβ0 by fitting the model to the databases, and deploying
the empirical Bayes method [26].

We limited the panel size to 15 for two reasons: firstly,
to demonstrate the value of our method the calibration panel
must be larger than the test panel. Secondly, as the number of
subjects increases, the MOS of test panel reaches the MOS of
24 subjects, and the error is not meaningful for comparing the
generalization performance of our method against MOS.

Figure 2 illustrates the performance of MOS as well as
our method, i.e. the calibrated MOS (CMOS). The MOS and
CMOS curves (averaged over 100 random panels) are plotted,
and the areas between the smallest- and largest-RMSE values
are shaded. CMOS slightly, but consistently performs better
than MOS in terms of mean. The main advantage of CMOS
is lowering the largest RMSE.

4.3. Calibration Set

To demonstrate the role of calibration set we considered three
calibration sets: 1 - To generate the ‘worst case’ calibration
scenario, we chose the 10 signals with the smallest value
of
∑m
i=1 bi. (IOSis −MOSs), where m is the number of

subjects in calibration panel, and s denotes the index of the
signal. All database subjects and signals were used to cal-
culate the bias bi. Thus, the signals were chosen to generate
a large error in bias estimation. 2 - In the ‘ideal case’ sce-
nario we used all the data (all subjects and all signals) to
characterize the subjects, which resulted in the most accu-
rate estimation of bias and variance given the data. 3- In the
‘typical case’ we randomly drew 10 signals as our calibration
set.

In Figure 3 the effect of the calibration set on RMSE is il-
lustrated for database BNR-X3. The first major observation is
that in the worst case CMOS still compares favorably against
the MOS. The second important observation is that 10 ran-
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Fig. 4. Effect of hyper-parameters on RMSE

Supplement 23 NOIZEUS
aλ0 7.30 9.36
bλ0 2.89 3.75
aβ0 5.75e-005 3.57e-005
bβ0 0.012 0.011

Table 1. Hyper-parameters learned from Supplement 23 and
NOIZEUS.

domly drawn signals perform quite closely to the ideal case,
which indicates that the choice of calibration signals in this
experiment is not critical.

4.4. Effect of hyper-parameters

To demonstrate the potential of priors in transferring infor-
mation from one dataset to the other, we did an experiment
where we used the data in one dataset with noisy speech sam-
ples (NOIZEUS) to generate hyper-parameters that are used
to characterize the subjects in another dataset, Supplement 23.
In Table 1 we see the values of hyper-parameters learned from
Supplement 23 and NOIZEUS are similar. Figure 4 shows
that similar RMSE performance is achieved regardless of the
data used to learn the hyper-parameters.

5. CONCLUSION

We presented a method to calibrate subjects and their MOS.
The decrease of maximum error shows that calibration im-
proves the robustness of the results against noisy and biased
subjects, which in turn allows for smaller panel sizes. Under
the testing conditions in Supplement 23, only 10 randomly
drawn calibration signals offer a significant drop of the largest
errors. We showed that existing listening data is useful in con-
structing priors to calibrate subjects in new tests.
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