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ABSTRACT 

 

Speech sinusoidal modeling has been successfully applied to 
a broad range of speech analysis, synthesis and modification 
tasks. At most, it reproduces a high quality speech, however 
for speech transients (e.g. plosives, glottal stops) it suffers 
from reduced fidelity due to lack of intra-frame modeling of 
irregularities. Various extensions had been proposed for the 
stationary sinusoidal model to cope with this problem. One 
of simple and well-known in the art approaches is 
incorporating of an intra-frame magnitude envelope into the 
sinusoidal model. It used to be done by iterative analysis-by-
synthesis procedure. In this paper we derive an optimal 
analytic solution for this problem. We will show that this 
solution yields significantly better model fit than the known-
in-the-art analysis-by-synthesis approach. 
 

Index Terms— Speech analysis, Sinusoidal modeling, 
Speech transient modeling, Magnitude envelope 
 

1. INTRODUCTION 

 
Speech sinusoidal modeling has been long in the core of 
many speech production models, used in a wide range if 
applications, such as speech synthesis, speech coding and 
speech transformation. Stationary sinusoidal modeling 
(SSM), representing a signal as a finite sum of sine waves, is 
widely used to describe a harmonic part of voiced speech, 
due to its simplicity and accuracy  [1] [2] [3]. Stationary 
unvoiced signals can also be reliably represented by this 
model, assuming dense enough sampling of the spectrum 
(i.e. arbitrarily setting of "unvoiced pitch" 0, 100

uv
f Hz≤ ) 

 [1]. With various noise modeling extensions (e.g. frequency 
jittering  [2], phase randomization  [2] [4], noise addition  [3]) 
it is capable of high quality synthesis of any quasi-stationary 
speech portions (voiced/unvoiced/mixed). 

The SSM approach is rather efficient and practical. 
Speech can be synthesized with constant frame update rate 
using simple overlap-add operation (i.e. no need for costly 
sample-wise parameter interpolation), provided one uses a 
reasonable frame rate (e.g. 100-200 Hz) and precise frame 
alignment procedure at the synthesis  [2] [3] [4]. 

However, the stationary models feature reduced fidelity 
at speech transients, such as voiced/unvoiced energy bursts, 
that are common in plosives and glottal stops. The so-called 

pre-echo effect (i.e. energy smearing at burst instants) is a 
typical artifact observed in SSM-generated speech  [5]. 

Various methods were explored to improve handling of 
transients by the sinusoidal model. Some of them exploit 
special transient handling (i.e. transform coding  [6] [7] or 
increasing frame rate locally  [6]), thus requiring some 
transient detection algorithms  [6]. In  [5] a very accurate 
adaptive model is proposed, but it is rather complicated both 
for analysis and for synthesis. On the contrary, the model 
proposed in [8] is less precise but more simple and practical 
for synthesis. 

In the latter method that was proposed by George & 
Smith  [8] and utilized for speech coding in  [4],  an intra-
frame magnitude envelope is incorporated into the 
sinusoidal model to track speech energy variations across the 
frame. The speech synthesis for this sinusoidal model 
extension (named hereby Magnitude Envelope Sinusoidal 
Modeling or MESM) is kept simple (i.e. it can be performed 
in overlap-add constant-frame-rate manner). However, the 
proposed sinusoidal parameter estimation (sinusoidal 
amplitudes and phases) is iterative and sub-optimal  [8]. 

In this paper we derive an optimal analytic solution for 
simultaneous extraction of MESM sinusoidal parameters 
(amplitudes and phases). We will show that this solution 
yields significantly better model fit (SNR) than the original 
iterative solution in  [8].  

The paper is structured as follows. First we review the 
SSM  [2] [3] and the MESM with iterative solution  [8]. Then 
the optimal solution is derived. Further, the performance of 
the optimal solution is evaluated and compared to the SSM 
and the iterative MESM. 
 
2. STATIONARY SINUSOIDAL MODELING (SSM) 

 
Within the SSM formulation  [2], the windowed portion of 
speech ( )ws n  is approximated by a finite sum of sine waves: 

0
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where ( )w n is a symmetric window , e.g. Hamming or 

Hanning, of 2N+1 length, { }
k
A and{ }

k
ϕ are harmonic 

amplitudes and phases correspondingly and 
k

θ  is the 

position of the highest local maximum found on the short 
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time amplitude spectrum  ( )wS θ in a close vicinity of 0kθ , 

i.e. the k-th multiple of the angular pitch frequency 0θ . 

Consequently, the determination of 
k

θ  is based on a 

harmonic peak picking operation, requiring a preceding 
high-resolution pitch frequency estimation stage  [1] [2] [3]. 

The dual representation of SSM approximation in 
frequency domain is given by 
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where ( )wS θ is a short time spectrum, ( )W θ  is the DFT of 

( )w n and the vector { } { }Re, Im,0 0

LL

k k kk k
c c jc

= =
+c � � , referred 

to as line spectrum, is to be estimated by an error criterion 
minimization. The error can be expressed either in time or in 
frequency domain: 
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The frequency domain estimation  (2) is further 
developed to a matrix form as follows  [2]: 
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where Rec and Imc are respectively the real and the 

imaginary parts of  the line spectrum, and 1W and 2W are 

matrices containing shifted replicas of ( )W θ  as their 

columns: 
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In the case of symmetric windows (real-valued W 
matrices), the substitution of (4) in (3) and its minimization 
with respect to vectors Re Im,c c results in the following 

equation set: 
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In  [3] it was shown that the time domain minimization 
can be expressed by a Toeplitz set of equations for efficient  
solution,  however, here we present a different time domain 
formulation that resembles a frequency domain solution  [2] 
and is further generalized in Section 4 of this paper. The 
time domain signal can be expressed in a matrix form as 
follows: 
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where 1T and 2T are matrices containing "windowed 

quadrature" 1 2( ), ( ),   0k k k L≤ ≤t t  columns vectors:  
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The substitution (8) in (3) and its minimization with respect 
to vectors Re Im,c c results in the following equation set 
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Please note that we used here the fact that 1 2 2 1
T T= =T T T T 0 for 

any symmetric ( )w n . 

 
3. ITERATIVE MAGNITUDE ENVELOPE 

SINUSOIDAL MODELING (ITERATIVE MESM) 

 

Let ( )i
nσ  be a magnitude envelope, i.e. an intra-frame 

magnitude modulation curve of s[n], centered over i-th 
frame mid-point. Its purpose is to provide a concise 
representation of energy variations within an analysis frame 
and to reduce the effects of these variations on parameter 
estimation  [8]. The magnitude envelope may be estimated by 
low-pass filtering of the input signal  [8] or by calculating 
moving weighted average of its magnitude followed by 
down-sampling  [4]. Typical magnitude envelopes and their 
spectral transforms are displayed on Figure 1.  

The windowed portion of speech centered over i-th 
frame center, is well approximated by: 

1
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where x(n) is a stationary signal, that can be represented by 
SSM. Then the minimization task is defined by: 

{ }

2

, , 1

argmin ( )( ( ) ( ) cos( )) ,
k k k k

L
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k k k
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σ θ ϕ
=
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The solutions of  (12), proposed in prior art works, are 
iterative [4] [8]. In each iteration, a new sinusoidal term is 
estimated, and then the model residual is formed. The 
parameters for each sinusoid are optimized to minimize a 
measure of the residual error energy. Thus, the recursion for 
the error residual after m iterations, is given by: 
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And the m-th iteration minimization task is defined as: 
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Assuming the frequency,
m

θ is given, the m-th spectral line is 

derived analytically  [8]: 
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where 1( )mt  and 2 ( )mt  are defined in  (9) and 

{ }1 1( )
N

m m n N
r n− − =−

r � . The frequency minimization step in  (14) 
is performed by explicit search over a redundant codebook 
of M frequencies (M L� ), so the equation set  (15) is 
solved about M times in each iteration. However, it is 
desirable both in terms of performance and optimality to 
reduce the frequency search codebook in each iteration to 
prevent selection of frequencies in close vicinity to each 
other  [8] [4]. In matching pursuits system  [4] it is proposed 
to select just a single frequency per frequency bin, similar to 
what comes out of the spectral peak picking algorithm  [1]. 
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Figure 1: Typical magnitude envelopes, and their spectral 
transforms. Hanning window spectral transform denoted by dashed 
line, magnitude envelope transforms denoted by dotted lines, and 
corresponding envelope window (i.e. a product of a magnitude 
envelope and Hanning window) transforms denoted by solid lines. 

 
4. JOINT MAGNITUDE ENVELOPE SINUSOIDAL 

MODELING (JOINT MESM) 

 
Given a magnitude envelope ( )i

nσ , a windowed speech 

approximation can be defined using a non-symmetric 
analysis window, varying from frame to frame. Indeed, 

defining ( ) ( ) ( )i i

env
w n w n nσ� , referred to as envelope 

window, we can rewrite  (11) as: 
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Typical spectral transforms of the envelope windows are 
displayed at Figure 1. 
We can use the SSM formulations (7), (8) and  (9), 
substituting the constant symmetric window ( )w n  by the 

varying envelope window ( )i

env
w n . In that case, the 

substitution of (8) to  (3) for time-domain minimization, 
brings us to (we omitted the frame index i for simplicity): 
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The line spectrum frequency set is defined by the peak 
picking technique similar to the SSM  [2], prior to solution of 
 (17). 

Figure 2 displays a typical reconstructed transient 
signals for SSM, iterative MESM, and joint MESM, 
compared to the corresponding PCM waveform. One can 
notice that a strong pre-echo artifact, which is present in the 
SSM reconstruction, is reduced by I-MESM and further 
reduced by J-MESM.  

For practical considerations, there is no need to apply 
the magnitude envelope for quasi-stationary speech frames. 
So, in this work we chose to apply MESM only to those 
frames having their magnitude fluctuation R  (18) above a 
predetermined threshold. 
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i th
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R R
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σ
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For the rest of the speech the magnitude envelope is 
discarded, and the stationary solutions ( (6) or  (10)) are 
applied. 
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Figure 2: Typical reconstructed waveforms for SSM, I-MESM, 
and J-MESM. 
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5. EXPERIMENTAL RESULTS 

 
Various sinusoidal models described here were applied upon 
a set of 100 US English male wideband sentences (sampling 
rate of 22050 Hz). The frame update rate was selected to be 
200 Hz with 10ms synthesis window (Hanning). Both voiced 
and unvoiced were analyzed with the SSM  [2], the iterative 
MESM (I-MESM)  [4] with frequency codebook length M = 
1024, and the joint MESM (J-MESM). For each one of the 
systems, the 

seg
SNR , as defined in  (19), was estimated for 

transient frames solely. The transient frames were chosen to 
be those with the magnitude fluctuation R > 4. This resulted 
in 13% of analyzed data (above 6000 frames).  
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The cross-system model fit comparison results are 
displayed in Table 1. One can notice that the joint MESM 
yields above 10dB of improvement for unvoiced frames and 
about 7 dB of improvement for voiced frames over the 
stationary system (SSM), compared to just about 2-3 dB 
improvement over the SSM for the iterative MESM. As a 
whole, the model fit of joint MESM is better than the SSM 
by about 10dB, and better than the iterative MESM by about 
8 dB.  

One may notice, however, that the model fit for voiced 
is lower than unvoiced. This is due to the fact that there are a 
lot of non-harmonic components in voiced transients, which 
are not appropriately modeled. One might want to treat all 
the transients as unvoiced; this is a feasible approach for 
pure reconstruction (no voice transformation is expected).  
Alternatively, the model can be extended, similar to 
proposed in  [4] or  [3]. 

 
SSM I-MESM J-MESM 

Unvoiced 13.78 15.46 24.51 

Voiced 5.78 8.63 12.43 

All 12.17 14.08 22.07 

Table 1: The segmental SNR values for various sinusoidal model 
systems. Measured for voiced "transient" frames, unvoiced 
"transient" frames, and for all the "transients".  

 
6. SUMMARY 

 
In this paper we presented an optimal analytic solution for 
estimation of sinusoidal parameters in presence of 
magnitude envelope, applied for speech transient modeling. 
The proposed solution significantly outperforms the known 
in the art iterative solution in terms of model fit, yielding 

8dB improvement in segmental SNR for non-stationary 
speech.   
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